Field Investigation and Research on Giant Debris Flow on August 14, 2010 in Yingxiu Town, Epicenter of Wenchuan Earthquake
-
摘要: 2010年8月14日强降雨过程导致汶川震区映秀镇红椿沟泥石流暴发, 泥石流堰塞堆积体堵断岷江主河道, 导致河水改道冲入映秀新镇, 引发洪水泛滥; 造成映秀镇13人死亡、59人失踪, 受灾群众8 000余人被迫避险转移.由于这场泥石流灾害发生在汶川地震震中区, 是地震与降雨共同作用下的结果, 研究其形成与成灾过程对于进一步认识强震区泥石流发育特征具有重要的意义.根据现场调查和航空图像解译, 分析了红椿沟泥石流流域特征, 特别是地震条件下的泥石流物源特征, 在此基础上讨论了泥石流起动过程和堆积过程.红椿沟泥石流典型实例表明了汶川震区泥石流已进入一个新的活跃期.因此, 应该开展对汶川地震区的泥石流风险评估和监测、早期预警等研究, 采取有效的工程措施控制泥石流的发生和危害.Abstract: A rainstorm triggered debris flow hazard occurred in Hongchun valley, Yingxiu town, epicenter of the Wenchuan earthquake on August 14, 2010. This event transported huge material sediment to the watercourse of the Minjiang River and produced a natural dam, resulting in flash flood in the new Yingxiu town. The flood claimed 13 lives, with a further 59 listed as missing. About 8 000 local residents were rapidly evacuated from their homes. The debris flow resulted from the coaction of the rainfall and earthquake. Therefore, it is significant for better understanding of development characters of debris flows to conduct the research on the initiation and movement process in high seismic intensity area. This paper studies characteristics of the initiation conditions and depositional fans of the debris flow based on field reconnaissance and interpretations of aerial photographs, focusing on loose sediment supply in source areas of debris flows. On the basis of the above analysis, the initiation and deposition process of debris flows are discussed. The catastrophic event indicates that the areas impacted by the Wenchuan earthquake become more prone to debris flow occurrences in the future. So it is important to assess debris flow risk and take measures to enhance hazard monitoring and offer early warnings for debris flows in the earthquake areas. The control work is also necessary for debris flow hazard mitigation.
-
Key words:
- debris flow /
- barrier dam /
- inundation /
- Wenchuan earthquake /
- Yingxiu town
-
表 1 映秀镇红椿沟“8·14”特大泥石流总量计算
Table 1. Calculated results of total volume of debris flows
堆积扇总面积(m2) 壅塞体面积(m2) 壅塞体度(m) 壅塞体泥砂量(104 m3) 扇体上段堆积面积(m2) 扇体上段堆积厚度(m) 扇体上段扇堆积泥砂量(104 m3) 泥石流总量(104 m3) 96 510 49 700 7~9 39.7 78 500 2.0~6.0 31.4 71.1 表 2 泥石流容重计算
Table 2. Calculation of densities of debris flows
P2(%) P05(%) γd(g/cm3) C 断面1-1' 67.1 8.6 2.07 0.629 断面2-2' 75.4 5.1 2.03 0.606 平均 71.25 6.85 2.05 0.618 表 3 泥石流的运动速度、流量和总量计算
Table 3. Calculation of velocity, discharge and volume of debris flows
R(m) S D50(mm) D10(mm) A(m2) V(m/s) Q(m3/s) T(s) Wc(104 m3) Ws(104 m3) 断面1-1' 1.15 0.15 3.7 0.08 86.0 8.67 745.76 5 400 80.5 49.7 断面2-2' 2.61 0.16 4.3 0.25 88.7 7.85 696.45 5 400 75.2 46.5 表 4 泥石流冲击力计算
Table 4. Calculation of impact force of debris flows
C1(m/s) Ad(m2) Vd(m/s) ρd(kg/m3) F(t) 4 500 0.6 4.34 2 700 3 225 注:石块与被撞物体的接触面积按堆积扇上最大石块的中、短径所在平面面积的10%计算;泥石流速度按沟口以内沟道速度(表 3)的50%计算. -
[1] Chen, X.Q., Chen, N.S., Cui, P., 2004. Calculation of discharge of debris flow induced by glacier lake outburst. Journal of Glaciology and Geocryology, 26(3): 357-362 (in Chinese with English abstract). http://www.cqvip.com/QK/93756X/200403/9908151.html [2] Cui, P., Yang, K., Chen, J., 2003. Relationship between occurrence of debris flow and antecedent precipitation: taking the Jiangjia Gully as an example. Science of Soil and Water Conservation, 1(1): 11-15 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-STBC200301005.htm [3] Lin, C.W., Liu, S.H., Lee, S.Y., et al., 2006. Impacts of the Chi-Chi earthquake on subsequent rainfall-induced landslides in Central Taiwan. Engineering Geology, 86(2-3): 87-101. doi: 10.1016/j.enggeo.2006.02.010 [4] Lin, C.W., Shieh, C.L., Yuan, B.D., et al., 2004. Impact of Chi-Chi earthquake on the occurrence of landslides and debris flows: example from the Chenyulan River watershed, Nantou, Taiwan. Engineering Geology, 71(1-2): 49-61. doi: 10.1016/S0013-7952(03)00125-X [5] Liu, C.N., Huang, H.F., Dong, J.J., 2008. Impacts of September 21, 1999 Chi-Chi earthquake on the characteristics of gully-type debris flows in Central Taiwan. Natural Hazards, 47(3): 349-368. doi: 10.1007/s11069-008-9223-9 [6] Tan, W.P., Han, Q.Y., 1992. Study on regional critical rainfall indices of debris flow in Sichuan Province. Journal of Catastrophology, 7(2): 37-42 (in Chinese with English abstract). http://www.researchgate.net/publication/289099372_Study_on_regional_critical_rainfall_indices_of_debris_flow_in_Sichuan_Province [7] Tang, C., Qi, X., Ding, J., 2010. Dynamic analysis on rainfall-induced landslide activity in high seismic intensity areas of the Wenchuan earthquake using remote sensing image. Earth Science—Journal of China University of Geosciences, 35(2): 317-323 (in Chinese with English abstract). doi: 10.3799/dqkx.2010.033 [8] Tang, C., Zhu, J., Li, W.L., et al., 2009. Rainfall-triggered debris flows following the Wenchuan earthquake. Bulletin of Engineering Geology and Environment, 68(2): 187-194. doi: 10.1007/s10064-009-0201-6 [9] Yu, B., 2008a. Research on the calculating density by the deposit of debris flows. Acta Sedimentological Sinaca, 26(5): 789-796 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200805013.htm [10] Yu, B., 2008b. Study on the mean velocity of viscous debris flows. Advances in Earth Science, 23(5): 524-532 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ200805015.htm [11] Yu, B., 2010. Study on the method for deposition depth calculation of debris flow with different densities. Journal of Disaster Prevention and Mitigation Engineering, 23(2): 207-211 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dzxk201002016 [12] Zhang, S.C., Hungr, O., Slaymaker. O., 1996. The calculation of impact force of boulders in debris flow. In: Du, R., ed., Debris flow observation and research. Sciences Press, Beijing, 67-72 (in Chinese). [13] 陈晓清, 陈宁生, 崔鹏, 2004. 冰川终碛湖溃决泥石流流量计算. 冰川冻土, 26(3): 357-362. doi: 10.3969/j.issn.1000-0240.2004.03.018 [14] 崔鹏, 杨坤, 陈杰, 2003. 前期降雨对泥石流形成的贡献—以蒋家沟泥石流形成为例. 中国水土保持科学, 1(1): 11-15. doi: 10.3969/j.issn.1672-3007.2003.01.005 [15] 谭万沛, 韩庆玉, 1992. 四川省泥石流预报的区域临界雨量指标研究. 灾害学, 7(2): 37-42. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU199202007.htm [16] 唐川, 齐信, 丁军, 2010. 汶川地震高烈度区暴雨滑坡活动的遥感动态分析. 地球科学——中国地质大学学报, 35(2): 317-323. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201002017.htm [17] 余斌, 2008a. 根据泥石流沉积物计算泥石流容重的方法研究. 沉积学报, 26(5): 789-796. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200805013.htm [18] 余斌, 2008b. 粘性泥石流的平均运动速度研究. 地球科学进展, 23(5): 524-532. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200805015.htm [19] 余斌, 2010. 不同容重的泥石流淤积厚度计算方法研究. 防灾减灾工程学报, 23(2): 207-211. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201002017.htm [20] 章书成, Hungr, O., Slaymaker, O., 1996. 泥石流中巨石冲击力计算. 见: 杜榕桓编, 泥石流观测与研究. 北京: 科学出版社, 67-72.