Tectonic Framework and Multiple Episode Tectonic Evolution in Deepwater Area of Qiongdongnan Basin, Northern Continental Margin of South China Sea
-
摘要: 基于大量琼东南盆地深水区高精度的地质-地球物理和钻井资料解释, 确立了该盆地"南北分带, 东西分块"的基本构造格局; 通过构造-地层、沉降史和沉降中心厘定等方面的综合研究, 在琼东南深水盆地中深入描述和分析了T70重要的构造变革界面特征, 该界面之下发育了一系列分散的、NE向展布的小型断陷盆地群, 该界面之上一直到T60界面发育时期, 盆地的沉降中心逐渐迁移到位于琼东南盆地中央坳陷区的、呈NE-WE-NWW弧形展布的大型断坳式盆地内, 该断坳盆地与下伏小型断陷盆地群构成显著的叠加关系; 以控盆边界断层的性质和几何学分布, 确定下伏的NE向展布的小型断陷盆地群受控于NW-SE向拉伸应力场, 而上覆的断坳盆地由近SN向拉伸应力作用所形成; 区域对比表明该界面广泛分布于南海北部大陆边缘盆地中, 具有区域性分布的特征; 生物地层和区域对比表明该界面年龄为32 Ma, 与南海初始扩张的年龄一致.因此, 该界面是一个发育于南海北部的、代表了南海扩张开始的一个区域性构造变革界面.该界面的发育导致了琼东南盆地深水区盆地结构和构造演化的复杂性, 以该界面为基础, 结合盆地充填序列中的其他重要界面和盆地的沉降史分析, 将盆地的构造演化划分为断陷、断坳、裂后热沉降和加速沉降4个构造演化幕, 从而确定了该盆地具有典型的幕式演化特征; 详细讨论了盆地周缘板块运动学重组事件和岩石圈深部活动对琼东南盆地幕式发育过程的控制机制.Abstract: Based on geological structural interpretation of a number of available high-resolution geological-geophysical and drilling data etc., a tectonic framework with zonal array in N-S direction and block division in W-E direction was established in deepwater area of Qiongdongnan basin (QDNB). A key tectonic revolutionary boundary, T70, was identified in QDNB by integrated analysis of tectono-stratigraphy, subsidence history and subsided depocentre migration. A series of small distributed NE-trending faulted basins developed widely below this boundary, while basin depocentre of QDNB above T70 boundary is located in center depression area trending NE-WE-NWW, forming a great fault-sag type basin, which is superimposed clearly over underlying faulted basin group above. Analyses of genetic type and geometry of basin-boundary fault indicate that NW-SE extensional tectonic stress field strongly controlled development of small distributed NE-trending faulted basin group underlying T70 boundary, and nearly SN extensional tectonic stress field resulted in formation of fault-sag basin over this boundary. The T70 boundary can be found and traced in northern continental margin basins of South China Sea. The evidence of regional and biostratigraphical correlation shows that the age of this boundary is 32 Ma, which is consistent with the time of initial spreading of South China Sea. Thus T70 boundary is a regional tectonic revolutionary boundary. The development of this boundary leads to complexity of tectonic framework and structure evolution. According to the T70 boundary, combining with other important boundaries identified in previous literatures in the basin filling sequence and subsidence analysis, four tectonic evolution episodes of QDNB, which are syn-rifted episode, fault-sag episode, post-rifted thermal subsidence episode and post-rifted accelerating subsiding episode, are proposed in this paper. Finally, Cenozoic lithospheric dynamic, kinematical reorganization of plates circum-South China Sea controlling on these tectonic episodes are discussed in depth.
-
Key words:
- South China Sea /
- Qiongdongnan basin /
- tectonic framework /
- episodic evolution /
- dynamic mechanics /
- sedimentology
-
图 7 东南亚盆地形成演化模式(据Tapponnier et al.(1982)、Lee and Lawver(1995)、Morley(2002)、Clift et al.(2008)、Hall(2002)、Hall et al.(2008)和Fyhn et al.(2009)资料编绘)
Fig. 7. Schematic figures showing evolution of sedimentary basins in Southeast Asia
-
[1] Briais, A., Patriat, P., Tapponnier, P., 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: implications for the Tertiary Tectonics of Southeast Asia. J. Geophys. Res. , 98(B4): 6299-6328. doi: 10.1029/92JB02280 [2] Clift, P., Lee, G.H., Duc, N.A., et al., 2008. Seismic reflection evidence for a dangerous grounds miniplate: no extrusion origin for the South China Sea. Tectonics, 27: TC3008. doi: 10.1029/2007TC002216 [3] Clift, P.D., Sun, Z., 2006. The sedimentary and tectonic evolution of the Yinggehai-Song Hong basin and the southern Hainan margin, South China Sea: implications for Tibetan uplift and monsoon intensification. J. Geophys. Res. , 111: B06405. doi: 10.1029/2005JB004048 [4] Cui, T., Xie, X.N., Ren, J.Y., et al., 2008. Dynamic mechanism of anomalous post-rift subsidence in Yinggehai basin. Earth Science—Journal of China University of Geosciences, 33(3): 349-356 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.046 [5] Fyhn, M.B.W., Boldree, L.O., Nielse, L.H., 2009. Geological development of the central and south Vietnamese margin: implications for the establishment of the South China Sea, IndoChinese escape tectonics. Tectonophysics, 478(3-4): 184-214. doi: 10.1016/j.tecto.2009.08.002 [6] Gong, Z.S., Li, S.T., Wang, J.Y., 2004. Active heat fuild, oil & gas pool-forming dynamics in northern marginal basins of South China Sea. Science Press, Beijing, 9-25 (in Chinese). [7] Gong, Z.S., Li, S.T., Xie, T.J., et al., 1997. Basin analysis and oil-gas accumulation on the northern continental margin of South China Sea. Science Press, Beijing, 27-122 (in Chinese). [8] Hall, R., 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. Journal of Asian Earth Sciences, 20(4): 353-431. doi: 10.1016/S1367-9120(01)00069-4 [9] Hall, R., Morley, C.K., 2004. Sundaland Basins. In: Clift, P., Wang, P., Kuhnt, W., eds., continent-ocean interactions within East Asian marginal seas. Geophysical Monograph(149), AGU, Washington, D.C., 55-85. [10] Hall, R., Van Hattum, M.W.A., Spakman, W., 2008. Impact of India-Asia collision on SE Asia: the record in Borneo. Tectonophysics, 451(1-4): 366-389. doi: 10.1016/j.tecto.2007.11.058 [11] He, J.X., Liu, H.L., Yao, Y.J., et al., 2008. Petroleum Geology and resource potential of continental marginal basins in northern South China. Petroleum Industry Press, Beijing, 146-169 (in Chinese). [12] Holloway, N.H., 1982. The stratigraphic and tectonic evolution of reed bank, North Palawan and Mindoro to the Asian mainland and its significance in the evolution of the South China Sea. American Association of Petroleum Geologists Bulletin, 66: 1357-1383. http://www.researchgate.net/publication/285766045_The_stratigraphic_and_tectonic_evolution_of_Reed_Bank_North_Palawan_and_Mindoro_to_the_Asian_mainland_and_its_significance_in_the_evolution_of_the_South_China_Sea [13] Huang, B.J., Xiao, X.M., Li, X.X., 2003. Geochemistry and origins of natural gases in the Yinggehai and Qiongdongnan basins, offshore South China Sea. Organic Geochemistry, 34(7): 1009-1025. doi: 10.1016/S0146-6380(03)00036-6 [14] Huang, J.L., Zhao, D.P., 2006. High-resolution mantle tomography of China and surrounding regions. J. Geophys. Res. , 111: B09305. doi: 10.1029/2005JB004066 [15] Huchon, P., Le pichon, X., Rangin, C., 1994. IndoChina peninsula and the collision of India and Eurasia. Geology, 22: 27-30. doi: 10.1130/0091-7613(1994)022<0027:IPATCO>2.3.CO;2 [16] Jiang, Z.X., Zeng, L., Li, M.X., et al., 1994. Tertiary petroleum provinces in China(Ⅷ): petroleum provinces northern continental shelf. Petroleum Industry Press, Beijing, 90-100 (in Chinese). [17] Lebedev, S., Nolet, G., 2003. Upper mantle beneath Southeast Asia from S velocity tomography. J. Geophys. Res. , 108(B1), 2048. doi: 10.1029/2000JB000073 [18] Lee, T.Y., Lawver, L.A., 1995. Cenozoic plate reconstruction of Southeast Asia. Tectonophysics 251(1-4): 85-138. doi: 10.1016/0040-1951(95)00023-2 [19] Lee, T.Y., Lo, C.H., Chung, S.L., et al., 1998. 40Ar/39Ar dating results of Neogene basalts in Vietnam and its tectonic implication. In: Flower, M.F.J., Chung, S.L., Lo, C.H., et al., eds., Mantle dynamics and plate interactions in East Asia, AGU Geodynamic Series, 27: 317-330. [20] Leloup, P.H., Arnaud, N., Lacassin, R., et al., 2001. New constraints on the structure, thermochronology and timing of the Ailaoshan-Red River shear zone, SE Asia. J. Geophys. Res. , 106: 6683-6732. doi: 10.1029/2000JB900322 [21] Li, Q.Y., Jian, Z.M., Su, X., 2005. Late Oligocene rapid transformations in the South China Sea. Marine Micropaleontology, 54(1-2): 5-25. doi: 10.1016/j.marmicro.2004.09.008 [22] Longley, I.M., 1997. The tectonostratigraphic evolution of SE Asia. In: Fraser, A.J., Matthews, S.J., Murphy, R.W., eds., Petroleum geology of Southeast Asia. Geological Society (Special Publications), 126: 311-339. doi: 10.1144/GSL.SP.1997.126.01.19 [23] McKenzie, D., 1978. Some remarks on the development of Sedimentary basins. Earth Planet Sci. Lett. , 40(1): 25-32. doi: 10.1016/0012-821X(78)90071-7 [24] Morley, C.K., 2002. A tectonic model for the Tertiary evolution of strike-slip faults and rift basins in SE Asia. Tectonophysics, 347(4): 189-215. doi: 10.1016/S0040-1951(02)00061-6 [25] Pang, X., Chen, C.M., Peng, D., et al., 2007. The pearl river deep-water fan system & petroleum in South China Sea. Science Press, Beijing, 23-49, 99-140 (in Chinese). [26] Rangin, C., Huchon, P., Le Pichon, X., et al., 1995. Cenozoic deformation of Central and South Vietnam. Tectonophysics, 251(1-4): 179-196. doi: 10.1016/0040-1951(95)00006-2 [27] Ren, J.Y., Li, S.T., 2000. Speading and dynamic setting of marginal basins of the western Pacific. Earth Science Frontiers, 7(3): 203-213 (in Chinese with English abstract). http://www.researchgate.net/publication/305387234_Spreading_and_dynamic_setting_of_marginal_basins_of_the_western_Pacific [28] Replumaz, A., Kárason, H., Hilst, R.D., et al., 2004.4D evolution of SE Asia's mantle from geological reconstructions and seismic tomography. Earth and Planetary Science Letters, 221(1-4): 103-115. doi: 10.1016/S0012-821X(04)00070-6 [29] Ru, K., Pigott, J.D., 1986. Episodic rifting and subsidence in the South China Sea. AAPG Bulletin, 70(9): 1136-1155. http://www.researchgate.net/publication/255129811_Episodic_rifting_and_subsidence_in_the_South_China_sea [30] Sclater, J.G., Christie, P.A.F., 1980. Continental stretching: an explanation of the post mid-cretaceous subsidence of the Central North Sea basin. J. Geophys. Res. , 85(B7): 3711-3739. doi: 10.1029/JB085iB07p03711 [31] Shao, L., Pang, X., Zhang, G.C., et al., 2009. Late oligocene tectonic event in the Northern South China Sea and its implications. Earth Science—Journal of China University of Geosciences, 34(5): 717-724 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.079 [32] Sun, Z., Sun, L.T., Zhou, D., et al., 2009. Discussion on the South China Sea evolution and lithospheric breakup through 3D analogue modeling. Earth Science—Journal of China University of Geosciences, 34(3): 435-447 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.049 [33] Tao, W.X., He, S.B., Zhao, Z.G., et al., 2006. Reservoir distribution in deepwater area of the Qiongdongnan basin. Petroleum Geology & Experiment, 28(6): 554-559 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-SYSD200606009.htm [34] Tapponnier, P., Peltzer, G., Armijo, R., 1986 On the mechanics of the collision between India and Asia. Geological Society (Special Publications), 19: 113-157. doi: 10.1144/GSL.SP.1986.019.01.07 [35] Tapponnier, P., Peltzer, G., Le Dain, A.Y., et al., 1982. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine. Geology, 10(12): 611-616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2 [36] Taylor, B., Hayes, D.E., 1983. Origin and history of the South China Sea basin. In: Hayes, D.E., ed., Tectonic and geologic evolution of Southeast Asian seas and islands, Part 2. American Geophysical Union Geophysical Monograph, 27: 23-56. [37] Tong, D.J., Ren, J.Y., Lei, C., et al., 2009. Lithosphere stretching model of deep water in Qiongdongnan basin, northern continental margin of South China Sea, and controlling of the post-rift subsidence. Earth Science—Journal of China University of Geosciences, 34(6): 963-974 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.110 [38] Wang, J.H., Yin, A., Harrison, T.M., et al., 2001. A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision zone. Earth and Planetary Science Letters, 188(1-2): 123-133. doi: 10.1016/S0012-821X(01)00315-6 [39] Wang, P.X., Jian, Z.M., Zhao, Q.H., et al., 2003. Evolution of the South China Sea and monsoon history revealed in deep sea records. Chinese Sci. Bull. , 48(23): 2549-2561. doi: 10.1360/03wd0156 [40] Wang, Z.F., He, J.X., Pei, Q.B., 2003. The origin and migration-accumulation features of CO2 in Ying-Qiong basin and the western Pearl River Mouth basin. China Offshore Oil and Gas (Geology), 17(5): 293-297 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghsyq-dz200305001 [41] Wheeler, P., White, N., 2002. Measuring dynamic topography: an analysis of Southeast Asia. Tectonics, 21(5): 1040-1051. doi: 10.1029/2001TC900023 [42] Xia, K., Xia, S., Chen, Z., Huang, C., 1995. Geothermal characteristics of the South China Sea. In: Gupta, M.L., Yamano, M., eds., Terrestrial heat flow and geothermal energy in Asia. IBH Publishing Co. Pvt. Ltd., New Delhi. [43] Xie, X., Müller, R.D., Li, S.T., et al., 2006. Origin of anomalous subsidence along the northern South China Sea margin and its relationship to dynamic topography. Marine and Petroleum Geology, 23(7): 745-765. doi: 10.1016/j.marpetgeo.2006.03.004 [44] Yuan, Y.S., Yang, S.C., Hu, S.B., et al., 2008. Tectonic subsidence of Qiongdongnan basin and its main control factors. Chinese Journal of Geophysics, 51(2): 376-383 (in Chinese with English abstract). http://www.oalib.com/paper/1569054 [45] Zhao, D.P., Tani, H., Mishra, O.P., 2004. Crustal heterogeneity in the 2000 western Tottori earthquake region: effect of fluids from slab dehydration. Physics of The Earth and Planetary Interiors, 145(1-4): 161-177. doi: 10.1016/j.pepi.2004.03.009 [46] Zhong, Z., Wang, L., Li, X., et al., 2004. The Paleogene basin-filling evolution of Qiongdongnan basin and its relation with seafloor spreading of the South China Sea. Marine Geology and Quaternary Geology, 24(1): 29-36. http://www.cqvip.com/main/zcps.aspx?c=1&id=9193848 [47] Zhou, D., Ru, K., Chen, H.Z., 1995. Kinematics of Cenozoic extension on the South China Sea continental margin and its implications for the tectonic evolution of the region. Tectonophysics, 251(1-4): 161-177. doi: 10.1016/0040-1951(95)00018-6 [48] Zhu, W.L., 2009. Some Key geological issues on oil and gas exploration in the northern deepwater area of the South China Sea. Acta Geologica Sinica, 83(8): 1059-1064 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200908003.htm [49] 崔涛, 解习农, 任建业, 等, 2008. 莺歌海盆地异常裂后沉降的动力学机制. 地球科学——中国地质大学学报, 33(3): 349-356. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200803009.htm [50] 龚再升, 李思田, 汪集旸, 等, 2004. 南海北部大陆边缘盆地油气成藏动力学研究. 北京: 科学出版社, 9-25. [51] 龚再升, 李思田, 谢泰俊, 等, 1997. 南海北部大陆边缘盆地分布与油气聚集. 北京: 科学出版社, 27-122. [52] 何家雄, 刘海龄, 姚永坚, 等, 2008. 南海北部边缘盆地油气地质及资源前景. 北京: 石油工业出版社, 146-169. [53] 蒋仲雄, 曾麟, 李明兴, 等, 1994. 中国油气区第三系(Ⅷ): 南海北部大陆架油气区分册. 北京: 石油工业出版社, 90-100. [54] 庞雄, 陈大民, 2007. 南海珠江深水扇系统及油气. 北京: 科学出版社, 23-49, 99-140. [55] 任建业, 李思田, 2000. 西太平洋边缘海盆地的扩张过程和动力学背景. 地学前缘, 7(3): 203-213. doi: 10.3321/j.issn:1005-2321.2000.03.019 [56] 邵磊, 庞雄, 张功成, 等, 2009. 南海北部渐新世末的构造事件. 地球科学——中国地质大学学报, 34(5): 717-724. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200905003.htm [57] 孙珍, 孙龙涛, 周蒂, 等, 2009. 南海岩石圈破裂方式与扩张过程的三维物理模拟. 地球科学——中国地质大学学报, 34(3): 435-447. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200903008.htm [58] 陶维祥, 何仕斌, 赵志刚, 等, 2006. 琼东南盆地深水区储层分布规律. 石油实验地质, 28(6): 554-559. doi: 10.3969/j.issn.1001-6112.2006.06.010 [59] 佟殿君, 任建业, 雷超, 等, 2009. 琼东南盆地深水区岩石圈伸展模式及其对裂后期沉降的控制. 地球科学——中国地质大学学报, 34(6): 963-974. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200906012.htm [60] 汪品先, 翦知湣, 赵泉鸿, 等, 2003. 南海演变与季风历史的深海证据. 科学通报, 48(1): 2228-2239. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200321004.htm [61] 王振峰, 何家雄, 裴秋波, 2003. 莺-琼盆地和珠江口盆地西部CO2成因及运聚分布特征. 中国海上油气(地质), 17(5): 293-297. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200305000.htm [62] 袁玉松, 杨树春, 胡圣标, 等, 2008. 琼东南盆地构造沉降史及其主控因素. 地球物理学报, 51(2): 376-383. doi: 10.3321/j.issn:0001-5733.2008.02.010 [63] 朱伟林, 2009. 南海北部深水区油气勘探关键地质问题. 地质学报, 83(8): 1059-1064. doi: 10.3321/j.issn:0001-5717.2009.08.001