• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    鄂尔多斯盆地延长组火山灰沉积物岩石地球化学特征

    邱欣卫 刘池洋 毛光周 吴柏林

    邱欣卫, 刘池洋, 毛光周, 吴柏林, 2011. 鄂尔多斯盆地延长组火山灰沉积物岩石地球化学特征. 地球科学, 36(1): 139-150. doi: 10.3799/dqkx.2011.015
    引用本文: 邱欣卫, 刘池洋, 毛光周, 吴柏林, 2011. 鄂尔多斯盆地延长组火山灰沉积物岩石地球化学特征. 地球科学, 36(1): 139-150. doi: 10.3799/dqkx.2011.015
    QIU Xin-wei, LIU Chi-yang, MAO Guang-zhou, WU Bo-lin, 2011. Petrological-Geochemical Characteristics of Volcanic Ash Sediments in Yanchang Formation in Ordos Basin. Earth Science, 36(1): 139-150. doi: 10.3799/dqkx.2011.015
    Citation: QIU Xin-wei, LIU Chi-yang, MAO Guang-zhou, WU Bo-lin, 2011. Petrological-Geochemical Characteristics of Volcanic Ash Sediments in Yanchang Formation in Ordos Basin. Earth Science, 36(1): 139-150. doi: 10.3799/dqkx.2011.015

    鄂尔多斯盆地延长组火山灰沉积物岩石地球化学特征

    doi: 10.3799/dqkx.2011.015
    基金项目: 

    国家自然科学基金(重大研究计划)重点项目 90814005

    陕西省"13115"科技创新工程重大科技专项项目 2008ZDKG-48

    国家重点基础研究发展计划"973"项目 2003CB214600

    西北大学研究生自主创新资助项目 09YZZ41

    详细信息
      作者简介:

      邱欣卫(1982-), 男, 博士, 主要从事盆地动力学与富烃凹陷形成机制方面研究.E-mail: qxweilt@126.com

    • 中图分类号: P584

    Petrological-Geochemical Characteristics of Volcanic Ash Sediments in Yanchang Formation in Ordos Basin

    • 摘要: 鄂尔多斯盆地延长组火山灰沉积物分布广泛, 为研究其岩石地球化学特征和形成机制, 通过详细的岩心观察、薄片鉴定、X荧光光谱分析(XRF)、ICP-MS分析、扫描电镜(SEM)分析等手段, 对延长组火山灰层进行了细致的岩石地球化学分析.结果表明火山灰沉积物富含晶屑、玻屑等火山物质, 整体蚀变强烈, 可分为凝灰岩和斑脱岩, 以伊利石、伊蒙混层等粘土矿物为主; 主量元素SiO2含量为50.29%~79.82%, 富钾, K2O+Na2O在3.20%~7.88%之间, SiO2与Al2O3、TFe2O3、MgO之间存在着明显的负相关关系; ∑REE在(99.82~550.15)×10-6之间变化, 总体特征表现为轻稀土富集, 重稀土亏损, 曲线形态整体表现为右倾型, Eu负异常, δEu为0.147~0.837, 没有明显的Ce异常; 大离子亲石元素K、Rb、Ba、Th呈正异常, 在Nb/Y-Zr/TiO2图解中, 数据点主要落在安山岩-流纹岩之间, 说明火山物质主体来源于中酸性岩.综合岩石地球化学和沉积学分析, 认为延长组火山灰沉积物包括空降型和水携两种形成机制, 大地构造环境判识图解反映了火山灰源于火山弧钙碱性岩浆原区, 与晚三叠世秦岭造山带的演化关系密切.

       

    • 图  1  鄂尔多斯盆地及外围盆地分布(据长庆油田地质志编写组,1992修改)

      Fig.  1.  Distribution of Ordos and periphery basins

      图  2  延长组火山灰沉积物显微镜(a~f)(单偏光)和SEM(g~h)特征

      a.宁42井,长7,1 556.2 m;b.正11井,长7,926.1 m;c.西187井,长8,2 132.8 m;d.庄50井,长7,1 948.3 m;e.庄210井,长8,1 704.4 m;f.庄80井,长7,2 024.5 m;g.胡148井,长9,2 639.4 m;h.镇44井,长7,2 566.6 m

      Fig.  2.  Microscope (single polar) and SEM characteristics of volcanic ash sediments in Yanchang Formation

      图  3  延长组火山灰沉积物的SiO-TFe2O3、CaO、MgO、Na2O、Al2O3、K2O关系

      Fig.  3.  SiO-TFe2O3, CaO, MgO, Na2O, Al2O3, K2O relationship of volcanic ash sediments in Yanchang Formation

      图  4  延长组火山灰沉积物REE配分模式(a)和蛛网图(b)

      Fig.  4.  REE distribution pattern (a) and spider (b) diagrams of volcanic ash sediments in Yanchang Formation

      图  5  延长组火山灰沉积物Nb/Y-Zr/TiO2图解

      Fig.  5.  Nb/Y-Zr/TiO2 diagram of volcanic ash sediments in Yanchang Formation

      图  6  延长组火山灰沉积物的岩心照片

      Fig.  6.  Drilling core photos of volcanic ash sediments in Yanchang Formation

      图  7  延长组火山灰沉积物原岩大地构造环境判别图解

      a.底图据Pearce et al., 1984, 其中VAG:火山弧花岗岩;Syn-COLG:同碰撞花岗岩;WPG:板内花岗岩;ORG:洋脊花岗岩;b.底图据Pearce, 1982;c.底图据Pearce and Peate, 1995;d.底图据Mullen, 1983, 其中OIT:大洋拉斑玄武岩;CAB:岛弧钙碱性玄武岩;IAT:岛弧拉斑玄武岩;OIA:大洋岛弧玄武岩;e.底图据Wood, 1980, 其中A区是N型MORB;B区为E型MORB和板内拉斑玄武岩;C区为碱性板内玄武岩;D区为火山弧玄武岩;f.底图据Cabanis and Lecolle, 1989, 其中1A区火山弧钙碱性玄武岩;1C区是火山弧拉斑玄武岩;1B区是1A区与1C区间的重叠区域;2A区是大陆玄武岩;2B区是弧后盆地玄武岩;3A区为大陆内裂谷区的碱性玄武岩;3B及3C区为E-MORB,3D区为N-MORB

      Fig.  7.  Discrimination diagrams of volcanic ash sediments in Yanchang Formation for tectonic settings

      表  1  延长组火山灰沉积物主量(%)、微量元素(10-6)含量

      Table  1.   Major and trace elements content of volcanic ash sediments in Yanchang Formation

      样号 R-02 R-03 R-04 R-05 R-10 N331 N332 N421 N422 N424 X1871 X1872
      SiO2 54.94 72.50 57.92 50.29 60.52 59.81 56.12 61.93 54.89 58.21 54.06 55.94
      TiO2 0.93 0.07 0.60 0.32 0.97 0.29 0.17 0.29 0.26 0.59 0.30 0.72
      Al2O3 24.65 14.90 21.14 29.67 22.14 20.97 26.24 21.79 25.58 20.44 27.59 24.11
      TFe2O3 3.10 1.73 4.23 2.59 3.46 3.48 2.69 2.46 3.02 3.56 2.46 2.93
      MnO 0.03 <0.01 0.04 0.01 0.03 0.03 0.01 0.01 <0.01 0.03 0.01 0.03
      MgO 1.70 1.37 1.98 1.69 1.06 1.77 1.46 1.61 1.49 2.05 1.87 1.79
      CaO 0.70 0.22 1.28 0.33 0.63 1.02 0.76 0.55 0.66 1.64 0.43 2.48
      Na2O 1.93 1.26 2.80 0.82 0.64 0.72 1.15 1.65 1.29 1.38 1.06 2.15
      K2O 5.24 2.52 5.08 4.16 3.84 4.00 3.97 3.82 4.34 4.27 4.82 3.6
      P2O5 0.03 0.02 0.15 0.12 0.03 0.08 0.05 0.14 0.10 0.15 0.06 0.11
      LOI 7.11 5.00 4.41 9.69 6.33 7.35 6.99 5.58 7.92 6.94 6.85 5.66
      Total 100.36 99.59 99.63 99.69 99.65 99.52 99.61 99.83 99.55 99.26 99.51 99.52
      Li 41.30 14.30 16.10 26.80 85.60 10.90 17.60 11.30 14.80 21.90 12.8 14.8
      Be 5.69 2.10 3.74 8.08 3.42 4.65 4.43 6.79 6.04 5.29 5.59 3.80
      Sc 18.00 4.67 10.20 10.50 12.60 6.97 11.60 5.81 9.36 13.80 11.50 7.82
      V 125.00 2.26 56.80 46.50 166.00 19.40 24.20 46.30 35.40 176.00 52.30 46.40
      Cr 93.00 1.45 27.30 11.70 97.70 4.78 13.00 6.65 9.68 32.80 26.80 14.30
      Co 6.04 6.91 14.40 4.60 15.20 40.50 36.90 13.10 4.11 26.80 12.60 3.19
      Ni 31.50 2.42 15.40 7.45 31.50 1.50 8.02 2.94 6.47 16.50 15.80 3.21
      Cu 45.00 1.37 23.30 7.85 35.80 8.94 11.00 4.63 12.10 23.60 18.80 13.40
      Zn 59.0 49.10 96.20 30.90 58.50 43.50 103.00 66.30 107.00 105.00 143.00 70.60
      Ga 35.50 19.80 33.30 27.70 25.50 24.90 29.60 24.50 32.00 26.20 39.30 27.40
      Ge 1.62 1.61 1.43 1.25 1.41 1.66 1.21 1.61 1.52 1.94 1.37 1.44
      Rb 207.00 109.00 191.00 106.00 140.00 143.00 129.00 153.00 159.00 220.00 146.00 147.00
      Sr 431.00 651.00 611.00 184.00 192.00 486.00 219.00 408.00 252.00 300.00 656.00 781.00
      Y 27.10 18.80 19.10 13.20 28.90 30.40 20.10 25.10 42.50 34.70 28.10 28.10
      Zr 203.00 126.00 232.00 216.00 199.00 240.00 183.00 167.00 323.00 226.00 202.00 320.00
      Nb 17.10 18.30 12.20 7.49 17.80 14.50 11.80 13.80 21.80 18.90 16.30 17.20
      Cs 12.40 4.62 4.83 11.10 7.31 9.64 10.10 9.30 15.00 13.70 11.30 12.40
      Ba 1 730.00 634.00 2 118.00 744.00 458.00 963.00 1 393.00 858.00 895.00 886.00 1 424.00 1 238.00
      Hf 4.98 4.76 5.63 9.76 4.86 7.40 6.97 5.54 10.00 6.56 7.39 9.35
      Ta 1.16 2.28 0.74 4.70 1.22 1.95 1.64 2.58 2.68 2.45 1.82 1.90
      Pb 28.50 38.20 46.00 77.10 30.00 50.00 58.40 52.30 14.20 15.50 43.20 62.80
      Th 16.10 43.80 17.00 57.90 15.80 51.70 22.40 47.40 42.10 34.70 24.80 39.30
      U 2.14 8.35 3.19 5.13 3.09 10.10 6.32 9.25 13.40 13.60 7.07 8.29
      La 55.20 30.90 62.60 33.70 54.50 57.60 26.60 66.50 64.70 48.50 69.60 74.60
      Ce 85.40 67.60 107.00 70.80 95.90 120.00 57.40 120.00 136.00 94.00 157.00 148.00
      Pr 9.45 7.59 11.40 7.86 10.20 12.50 6.52 10.90 14.90 10.10 16.90 14.80
      Nd 36.30 26.30 40.00 28.00 38.80 45.00 25.50 35.90 55.80 36.80 63.90 51.50
      Sm 6.56 5.53 6.24 5.00 7.03 8.17 5.77 5.49 11.10 7.04 12.00 8.94
      Eu 1.49 0.29 1.59 0.84 1.46 0.66 1.02 0.88 1.53 1.24 2.20 1.01
      Gd 5.81 4.47 5.10 4.04 6.44 6.43 4.72 4.38 9.25 5.87 7.81 6.55
      Tb 0.76 0.68 0.61 0.53 0.85 1.03 0.74 0.63 1.46 0.93 0.95 0.94
      Dy 4.37 3.98 3.27 2.84 4.84 6.03 4.07 3.72 8.45 5.64 4.77 5.35
      Ho 0.93 0.76 0.65 0.58 1.00 1.23 0.77 0.82 1.69 1.21 0.92 1.07
      Er 2.56 2.14 1.84 1.71 2.73 3.25 1.88 2.44 4.43 3.47 2.36 2.96
      Tm 0.33 0.34 0.26 0.26 0.37 0.47 0.27 0.4 0.65 0.54 0.31 0.44
      Yb 2.06 2.80 1.72 1.85 2.44 2.92 1.60 2.78 4.07 3.65 1.83 2.82
      Lu 0.30 0.44 0.25 0.28 0.36 0.40 0.22 0.45 0.57 0.56 0.26 0.40
      ∑REE 211.52 153.82 242.53 158.29 226.92 265.69 137.08 255.29 314.60 219.55 340.81 319.38
      LREE/HREE 11.36 8.85 16.70 12.09 10.92 11.21 8.61 15.34 9.29 9.04 16.74 14.56
      (La/Yb)n 18.07 7.44 24.54 12.28 15.06 13.30 11.21 16.13 10.72 8.96 25.64 17.84
      δEu 0.72 0.17 0.84 0.55 0.65 0.27 0.58 0.53 0.45 0.57 0.65 0.39
      δCe 0.83 1.03 0.90 1.01 0.92 1.03 1.02 0.98 1.02 0.97 1.07 1.01
      (La/Sm)n 5.29 3.51 6.31 4.24 4.88 4.43 2.90 7.62 3.67 4.33 3.65 5.25
      (Gd/Lu)n 2.48 1.30 2.61 1.85 2.29 2.06 2.75 1.25 2.08 1.34 3.85 2.10
      样号 ZH50 ZH210 MU9 B270 ZH33 ZH361 ZH362 ZH111 ZH112 LI51 R-11 R-12
      SiO2 65.94 53.57 53.50 55.29 53.01 67.99 55.08 79.82 63.54 68.43 - -
      TiO2 0.08 0.44 0.48 0.17 0.78 0.85 0.83 0.09 0.12 0.08 - -
      Al2O3 19.95 27.24 25.77 28.07 24.14 18.60 18.82 9.85 10.71 17.15 - -
      TFe2O3 1.76 2.41 3.95 1.71 3.72 1.88 7.97 0.61 1.49 2.57 - -
      MnO 0.00 0.01 0.02 <0.01 0.05 0.01 0.11 0.02 0.13 0.01 - -
      MgO 1.65 2.15 1.77 1.12 1.72 1.25 2.41 0.24 0.48 1.40 - -
      CaO 0.17 0.61 0.48 0.41 2.93 0.11 1.26 0.37 8.18 0.36 - -
      Na2O 0.49 0.65 0.89 1.06 2.46 0.14 0.14 0.29 0.45 0.37 - -
      K2O 4.23 5.38 3.35 3.40 3.34 3.40 3.06 4.28 3.98 3.28 - -
      P2O5 0.02 0.11 0.19 0.07 0.16 0.06 0.19 0.03 0.08 0.02 - -
      LOI 4.90 6.74 9.12 8.62 6.98 5.28 9.64 3.95 10.24 5.85 - -
      Total 99.19 99.31 99.52 99.92 99.29 99.57 99.51 99.55 99.4 99.52 - -
      Li 12.80 11.10 27.20 6.50 35.40 58.10 54.70 54.70 22.80 21.90 75.90 21.40
      Be 6.35 8.76 3.31 6.81 3.65 3.75 4.05 2.65 3.54 3.37 3.77 5.62
      Sc 6.46 9.28 12.10 4.76 8.21 14.20 20.70 1.84 4.31 5.35 16.10 12.90
      V 4.56 29.00 48.80 20.30 46.20 116.00 136.00 8.05 22.20 1.84 130.00 74.80
      Cr 6.18 10.20 21.90 3.78 11.40 78.50 94.30 6.52 8.84 9.74 95.30 39.60
      Co 5.06 0.87 14.20 4.28 4.24 28.50 18.00 64.90 2.57 23.70 37.70 11.20
      Ni 3.18 3.43 10.10 3.47 5.49 33.50 47.8 2.23 5.37 4.20 37.5 15.10
      Cu 3.95 10.70 30.70 7.58 16.70 18.50 38.50 3.03 8.06 2.90 35.40 24.30
      Zn 70.30 53.90 166.00 102.00 86.90 29.60 66.70 28.50 28.80 51.30 107.00 88.00
      Ga 23.50 35.00 27.10 39.30 28.10 25.10 26.00 10.20 12.70 21.40 26.90 46.30
      Ge 1.40 1.68 1.79 1.33 1.34 1.93 1.74 1.75 1.36 1.30 1.65 1.91
      Rb 162.00 169.00 129.00 113.00 135.00 195.00 155.00 256.00 245.00 107.00 157.00 233.00
      Sr 401.00 707.00 149.00 229.00 709.00 71.80 92.60 50.30 494.00 344.00 330.00 482.00
      Y 30.40 46.90 22.00 44.50 20.80 29.50 41.30 17.00 35.50 14.10 28.50 35.20
      Zr 175.00 323.00 194.00 175.00 283.00 187.00 194.00 64.00 71.80 152.00 373.00 326.00
      Nb 27.50 16.00 11.60 9.96 13.40 19.10 16.50 7.99 10.40 21.50 18.00 15.30
      Cs 12.30 17.20 7.57 11.70 9.51 12.40 10.00 2.10 2.93 4.56 6.90 7.07
      Ba 1 336.00 1 157.00 853.00 763.00 945.00 360.00 426.00 723.00 432.00 943.00 1 701.00 2 018.00
      Hf 6.83 9.78 6.50 11.00 7.73 5.29 4.92 2.37 2.44 5.99 8.79 7.67
      Ta 2.80 2.39 1.80 3.90 0.91 1.42 1.25 1.77 1.66 2.54 1.19 0.91
      Pb 53.70 56.80 9.67 81.10 40.20 31.20 25.00 21.70 18.10 51.00 24.80 49.00
      Th 40.40 53.70 19.30 57.80 23.60 19.50 18.30 22.20 23.40 41.20 14.30 18.50
      U 8.60 11.60 8.04 16.10 6.31 3.18 5.20 6.51 9.71 9.15 2.63 3.95
      La 32.30 99.10 36.10 80.20 52.50 48.40 50.10 22.50 27.30 25.30 65.00 156.70
      Ce 71.00 215.00 77.60 174.00 107.00 93.50 101.00 43.70 51.80 59.70 107.00 241.80
      Pr 7.64 22.40 8.54 18.60 10.50 9.77 10.80 4.48 5.45 6.72 12.30 26.10
      Nd 28.00 79.90 32.20 68.20 35.90 35.40 42.60 15.60 19.70 23.60 46.90 89.80
      Sm 6.04 15.70 6.58 14.50 6.22 6.39 8.76 3.04 4.26 5.15 8.52 12.60
      Eu 0.28 2.37 0.92 0.80 0.85 1.20 1.74 0.31 0.47 0.23 1.65 2.72
      Gd 5.22 11.40 4.92 11.80 4.44 5.21 7.80 2.55 4.32 4.19 7.82 9.26
      Tb 0.93 1.54 0.73 1.83 0.65 0.81 1.21 0.42 0.79 0.68 1.04 0.91
      Dy 5.75 8.30 4.08 10.20 3.77 4.97 7.12 2.57 5.10 3.76 6.06 4.42
      Ho 1.17 1.63 0.82 1.95 0.77 1.07 1.48 0.56 1.11 0.66 1.25 0.8
      Er 3.36 4.39 2.24 4.85 2.15 3.03 4.05 1.65 3.15 1.54 3.46 2.28
      Tm 0.56 0.63 0.33 0.64 0.32 0.46 0.60 0.27 0.48 0.22 0.47 0.30
      Yb 4.17 3.91 2.09 3.70 2.07 3.10 3.90 1.88 3.22 1.50 3.06 2.14
      Lu 0.65 0.56 0.31 0.48 0.31 0.46 0.59 0.29 0.48 0.22 0.45 0.32
      ∑REE 167.07 466.83 177.46 391.75 227.45 213.77 241.75 99.82 127.63 133.47 264.98 550.15
      LREE/HREE 6.66 13.43 10.43 10.05 14.71 10.19 8.04 8.80 5.84 9.45 10.22 25.93
      (La/Yb)n 5.22 17.09 11.65 14.61 17.10 10.53 8.66 8.07 5.72 11.37 14.32 49.37
      δEu 0.15 0.52 0.47 0.18 0.47 0.62 0.63 0.33 0.33 0.15 0.61 0.74
      δCe 1.05 1.06 1.03 1.05 1.04 0.98 1.00 0.99 0.97 1.08 0.85 0.83
      (La/Sm)n 3.36 3.97 3.45 3.48 5.31 4.76 3.60 4.66 4.03 3.09 4.80 7.82
      (Gd/Lu)n 1.03 2.61 2.03 3.15 1.84 1.45 1.69 1.13 1.15 2.44 2.23 3.71
      下载: 导出CSV
    • [1] Aitchison, J.C., Ali, J.R., Chan, A., et al., 2008. Tectonic implications of felsic tuffs within the Lower Miocene gangrinboche conglomerates, southern Tibet. Journal of Asian Earth Sciences, 34(3): 287-297. doi: 10.1016/j.jseaes.2008.05.008
      [2] Bescoby, D., Barclay, J., Andrews, J., 2008. Saints and sinners: a tephrochronology for late Antique landscape change in Epirus from the eruptive history of Lipari, Aeolian Islands. Journal of Archaeological Science, 35(9): 2574-2579. doi: 10.1016/j.jas.2008.04.013
      [3] Cabanis, B., Lecolle, M., 1989. Le diagramme La/10-Y/15-Nb/8: un outil pour la discrimination de séries volcaniques et la mise en évidence des processus de mélange et/ou de contamination crustale. Comptes Rendus de l'Académie des Sciences (Seri. Ⅱ), 309(20): 2023-2029. http://cat.inist.fr/?aModele=afficheN&cpsidt=6648552
      [4] Cheng, R.H., Liu, Z.J., Wang, P.J., 1997. Geological significance of volcanic events in the eastern part of Songliao basin. Earth Science—Journal of China University of Geoscience, 22(1): 57-61 (in Chinese with English abstract).
      [5] Compile Group of Changqing Oilfield Geological History, 1992. Geological history of China petroleum (Volume 12)—Changqing oilfield. Petroleum Industry Press, Beijing (in Chinese).
      [6] Cullen-Lollis, J., Huff, W.D., 1986. Correlation of Champlainian (Middle Ordovician) K-bentonite beds in central Pennsylvania based on chemical fingerprinting. The Journal of Geology, 94: 865-874. doi: 10.1086/629092
      [7] D'Addezio, G., Karner, D.B., Burrato, P., et al., 2006. Tephrochronology in faulted Middle Pleistocene tephra layer in the Val d'Agri area (southern Italy). Annual of Geophysics, 49: 1029-1040. http://www.oalib.com/paper/2576631
      [8] Desmares, D., Grosheny, D., Beaudoin, B., et al., 2007. High resolution stratigraphic record constrained by volcanic ash beds at the Cenomanian-Turonian boundary in the Western Interior basin, USA. Cretaceous Research, 28(4): 561-582. doi: 10.1016/j.cretres.2006.08.009
      [9] Dong, H.L., Hall, C.M., Halliday, A.N., et al., 1997. 40Ar/39Ar illite dating of Late Caledonian (Acadian) metamorphism and cooling of K-bentonites and slates from the Welsh basin, U.K. . Earth and Planetary Science Letters, 150(3-4): 337-351. doi: 10.1016/S0012-821x(97)00100-3
      [10] Foreman, B.Z., Rogers, R.R., Deino, A.L., et al., 2007. Geochemical characterization of bentonite beds in the two Medicine Formation (Campanian, Montana), including a new 40Ar/39Ar age. Cretaceous Research, 29(3): 373-385. doi: 10.1016/j.cretres.2007.07.001
      [11] Gerhard, E., 2000. Sedimentary basins: evolution, facies, and sediment budget. Springer, New York, 291-381.
      [12] Grevenitz, P., Carr, P., Hutton, A., 2003. Origin alteration and geochemical correlation of Late Permian airfall tuffs in coal measures, Sydney basin, Australia. International Journal of Coal Geology, 55(1): 27-46. doi: 10.1016/S0166-5162(03)00064-8
      [13] Haskin, L.A., Haskin, M.A., Frey, F.A., et al., 1968. Relative and absolute terrestrial abundances of the rare earth. In: Ahrens, L.H., ed., Origin and distribution of the elements. Pergamon Press, Oxford, 889-912.
      [14] Haaland, H.J., Furnes, H., Martinsen, O.J., 2000. Paleogene tuffaceous intervals, grane field (Block 25-11), Norwegian North Sea: their depositional, petrographical, geochemical character and regional implications. Marine and Petroleum Geology, 17(1): 101-118. doi: 10.1016/S0264-8172(99)00009-4
      [15] Hints, R., Kirsimäe, K., Somelar, P., et al., 2006. Chloritization of Late ordovician K-bentonites from the northern Baltic Palaeobasin-influence from source material or diagenetic environment. Sedimentary Geology, 191(1-2): 55-66. doi: 10.1016/j.sedgeo.2006.01.004
      [16] Hu, Y.H., Liu, J., Zhou, M.Z., et al., 2009. An overview of Ordovician and Silurian K-bentonites. Geochimica, 38(4): 393-404 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200904011.htm
      [17] Huff, W.D., 2008. Ordovician K-bentonites: issues in interpreting and correlating ancient tephras. Quaternary International, 178(1): 276-287. doi: 10.1016/j.quaint.2007.04.007
      [18] Huff, W.D., Kolata, D.R., 1989. Correlation of K-bentonite beds by chemical fingerprinting using multivariate statistics. In: Cross, T.A., ed., Quantitative Dynamic Stratigraphy. Prentice Hall, Englewood Cliffs, NJ, 567-577.
      [19] Kramer, W., Weatherall, G., Offler, R., 2001. Origin and correlation of tuffs in the Permian newcastle and Wollombi Coal measures, NSW, Australia, using chemical finger printing. International Journal of Coal Geology, 47(2): 115-135. doi: 10.1016/S0166-5162(01)00034-9
      [20] Liu, C.Y., Qiu, X.W., Wu, B.L., et al., 2007. Characteristics and dynamic settings of Central-east Asia multi-energy minerals metallogenetic domain. Science in China (Ser. D), 50(Supp. Ⅱ): 1-18. doi: 10.1007/s11430-007-6023-0
      [21] Liu, C.Y., Zhao, H.G., Gui, X.J., et al., 2006. Space-time coordinate of the evolution and reformation and mineralization response in Ordos basin. Acta Geologica Sinica, 80(5): 617-638 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/dizhixb200605001
      [22] Marfil, R., Hall, A., Garcia, G.S., et al., 1998. Petrology and geochemistry of diagenetically altered tuffaceous rocks from the Middle Triassic of Central Spain. Journal of Sedimentary Research, 68(3): 391-403. doi: 10.2110/jsr.68.391
      [23] McLennan, S.M., 1989. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In: Lipin, B.R., McKay, G.A., eds., Geochemistry and mineralogy of rare earth elements. Reviews in Mineralogy, 21: 169-200.
      [24] Mullen, E.D., 1983. MnO/TiO2/P2O5: a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth and Planetary Science Letters, 62(1): 53-62. doi: 10.1016/0012-821X(83)90070-5
      [25] Pearce, J.A., 1982. Trace element characteristics of lava from destructive plate boundaries. In: Thorpe, R.S., ed., Andesites: orogenic andesites and related rocks. Wiley, Chichester, 525-548.
      [26] Pearce, J.A., Cann, J.R., 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters, 19(2): 190-200. doi: 10.1016/0012-821X(73)90129-5
      [27] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 15: 956-983. doi: 10.1093/petrology/25.4.956
      [28] Pearce, J.A., Peate, D.W., 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences, 23: 251-285. doi: 10.1146/annurev.ea.23.050195.001343
      [29] Prueher, L.M., Rea, D.K., 2001. Tephrochronology of the Kamchatka-Kurile and Aleutian arcs: evidence for volcanic episodicity. Journal of Volcanology and Geothermal Research, 106(1-2): 67-84. doi: 10.1016/S0377-0273(00)00266-3
      [30] Qiu, X.W., Liu, C.Y., Li, Y.H., et al., 2009. Distribution characteristics and geological significances of tuff interlayers in Yanchang Formation of Ordos basin. Acta Sedimentologica Sinica, 27(6): 1138-1146 (in Chinese with English abstract). http://www.cqvip.com/QK/95994X/200906/32430157.html
      [31] Roberts, B., Merriman, R.J., 1990. Cambrian and ordovician metabentonites and their relevance to the origins of associated mudrocks in the northern sector of the Lower Palaeozoic Welsh Marginal basin. Geological Maga zine, 127(1): 31-43. doi: 10.1017/S001675680001414X
      [32] Shane, P., 2000. Tephrochronology: a New Zealand case study. Earth-Science Reviews, 49(1-4): 223-259. doi: 10.1016/S0012-8252(99)00058-6
      [33] Su, W.B., Huff, W.D., Ettensohn, F.R., et al., 2008a. K-bentonite, black-shale and flysch successions at the Ordovician-Silurian transition, South China: possible sedimentary responses to the accretion of Cathaysia to the Yangtze Block and its implications for the evolution of Gondwana. Gondwana Research, 15(1): 111-130. doi: 10.1016/j.gr.2008.06.004
      [34] Su, W.B., Zhang, S.H., Huff, W.D., et al., 2008b. SHRIMP U-Pb ages of K-bentonite beds in the Xiamaling Formation: implications for revised subdivision of the Meso-to Neoproterozoic history of the North China craton. Gondwana Research, 14(3): 543-553. doi: 10.1016/j.gr.2008.04.007
      [35] Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J., eds., Magmatism in the ocean basins. Geological Society Special Publication, 42: 313-345. doi: 10.1144/asl.sp.1989.042.01.19
      [36] Wang, P.J., Liu, W, Z., 2001. Depositional events: introducation, example, application. Jilin Science and Technology Press, Changchun (in Chinese).
      [37] Wood, D.A., 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1): 11-30. doi: 10.1016/0012-821X(80)90116-8
      [38] Zhang, G.W., Zhang, B.R., Yuan, X.C., et al., 2001. Qinling orogenic belt and continental dynamics. Science Press, Beijing (in Chinese).
      [39] Zhang, J.M., Li, G.X., Zhou, C.M., 1997. Deposits of volcanic eruption event from the basal Lower Cambrian phosphatic sequence in eastern Yunnan and their significance. Journal of Stratigraphy, 21(2): 91-99, 155 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DCXZ702.000&dbcode=CJFD&year=1997&dflag=pdfdown
      [40] Zhang, W.Z., Yang, H., Peng, P.A., et al., 2009. The influence of late Triassic volcanism on the development of Chang 7 high grade hydrocarbon source rock in Ordos basin. Geochimica, 38(6): 573-582 (in Chinese with English abstract). http://www.researchgate.net/publication/285070931_The_influence_of_Late_Triassic_volcanism_on_the_development_of_Chang_7_high_grade_hydrocarbon_source_rock_in_Ordos_Basin
      [41] Zhong, R., Sun, S.P., Chen, F., et al., 1995. The discovery of Rhyo-tuffite in the Taiyuan Formation and stratigraphic correlation of the Daqingshan and Datong coalfields. Acta Geoscientia Sinica, 3: 291-299 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB503.005.htm
      [42] Zhong, R., Sun, S.P., Fu, Z.M., 1996. Volcanic event deposits and stratigraphic correlation of the Late Carboniferous—early Permian in Shandong and adjacent regions. Acta Geologica Sinica, 70(2): 142-152 (in Chinese with English abstract). http://www.researchgate.net/publication/284640449_Volcanic_event_deposits_and_stratigraphic_correlation_of_the_Late_Carboniferous-Early_Permian_in_Shandong_and_adjacent_Regions_in_Chinese
      [43] Zhu, R.X., Yang, Z.Y., Wu, H.N., et al., 1998. Paleomagnetic constraints on the tectonic history of major blocks of China during the Phanerozoic. Science in China (Ser. D), 28(Suppl. 2): 1-19. doi: 10.1007/BF02984508
      [44] Zuo, Z.F., Qi, Y., Ge, X.R., et al., 2008. Effect of late Triassic volcanic sediment event on hydrocarbon accumulation conditions in Ordos basin. Journal of Lanzhou University (Natural Sciences), 44(3): 12-15 (in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=27608168
      [45] 长庆油田地质志编写组, 1992. 中国石油地质志(卷十二): 长庆油田. 北京: 石油工业出版社.
      [46] 程日辉, 刘招君, 王璞君, 1997. 松辽盆地东部火山事件的地质意义. 地球科学——中国地质大学学报, 22(1): 57-61. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX701.010.htm
      [47] 胡艳华, 刘健, 周明忠, 等, 2009. 奥陶纪和志留纪钾质斑脱岩研究评述. 地球化学, 38(3): 393-404. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200904011.htm
      [48] 刘池洋, 赵红格, 桂小军, 等, 2006. 鄂尔多斯盆地演化-改造的时空坐标及其成藏(矿)响应. 地质学报, 80(5): 617-638. doi: 10.3321/j.issn:0001-5717.2006.05.001
      [49] 邱欣卫, 刘池洋, 李元昊, 等, 2009. 鄂尔多斯盆地延长组凝灰岩夹层展布特征及其地质意义. 沉积学报, 17(6): 1138-1146. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200906017.htm
      [50] 王璞珺, 刘万洙, 单玄龙, 等, 2001. 事件沉积: 导论·实例·应用. 长春: 吉林科学技术出版社.
      [51] 张国伟, 张本仁, 袁学诚, 等, 2001. 秦岭造山带与大陆动力学. 北京: 科学出版社.
      [52] 张俊明, 李国祥, 周传明, 1997. 滇东下寒武统含磷岩系底部火山喷发事件沉积及其意义. 地层学杂志, 21(2): 91-99, 155. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ702.001.htm
      [53] 张文正, 杨华, 彭平安, 等, 2009. 晚三叠世火山活动对鄂尔多斯盆地长7优质烃源岩发育的影响. 地球化学, 38(6): 573-582. doi: 10.3321/j.issn:0379-1726.2009.06.007
      [54] 钟蓉, 孙善平, 陈芬, 等, 1995. 大青山、大同煤田太原组流纹质沉凝灰岩的发现及地层对比. 地球学报, 3: 291-299. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB503.005.htm
      [55] 钟蓉, 孙善平, 傅泽明, 1996. 山东及邻区晚石炭世-早二叠世火山事件沉积及地层对比. 地质学报, 70(2): 142-152. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199602004.htm
      [56] 朱日祥, 杨振宇, 吴汉宁, 等, 1998. 中国主要地块显生宙古地磁视极移曲线与地块运动. 中国科学(D辑), 28(增刊): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK1998S1000.htm
      [57] 左智峰, 戚颖, 葛小瑞, 等, 2008. 鄂尔多斯盆地晚三叠世火山物质对油气成藏条件的影响. 兰州大学学报(自然科学版), 44(3): 12-15. doi: 10.3321/j.issn:0455-2059.2008.03.003
    • 加载中
    图(7) / 表(1)
    计量
    • 文章访问数:  3694
    • HTML全文浏览量:  143
    • PDF下载量:  270
    • 被引次数: 0
    出版历程
    • 收稿日期:  2010-05-29
    • 刊出日期:  2011-01-01

    目录

      /

      返回文章
      返回