Main Controlling Factors on Oil Inclusion Homogenization Temperatures and Their Geological Significance
-
摘要: 成岩矿物中捕获的油包裹体已经广泛应用到油气成藏过程约束研究之中, 但对油包裹体均一温度的影响因素及其地质涵义还了解得不够清楚.主要运用热动力学模拟的方法, 通过模拟黑油和挥发性油两种不同原油类型在不同温-压条件下捕获时油包裹体均一温度与捕获时温度之间的关系, 发现油包裹体的均一温度受到油组分、捕获温度和压力等多种因素影响; 利用同期盐水包裹体约束的温-压条件并结合单包裹体组分分析结果, 反过来可以给出油包裹体均一温度以及与同期盐水包裹体均一温度差值地质解释, 从而为获得较为准确的油气充注幕次划分和古流体压力热动力学模拟结果奠定基础.Abstract: Petroleum inclusions trapped in diagenetic minerals have been extensively applied to studies of constraint hydrocarbon migration and accumulation, but the effects on petroleum inclusion homogenization temperatures and their geological implications have not been completely understood. In this paper, a thermodynamic modeling method was employed, and two types of black oil and volatile oil were used to simulate their homogenization temperatures and to establish the homogenization temperature relationship between petroleum inclusions and their coeval aqueous inclusions under different P-T conditions. It is concluded that all the petroleum composition, trapped temperature and pressure have influence on the petroleum inclusion homogenization temperature. In contrast, if the trapped P-T and petroleum composition of single inclusion are known, the petroleum inclusion homogenization temperature and the difference between petroleum inclusions and their coeval aqueous inclusions can give geological meanings, which can play a great role on hydrocarbon charging episodes and paleofluid pressure modeling.
-
Key words:
- petroleum inclusion /
- homogenization temperature /
- PVT composition /
- petroleum geology
-
图 4 沿着A点到F点轨迹油包裹体的捕获温度与其均一温度和△Th关系
Fig. 4. Trapped temperatures of oil inclusions vs. their homogenization temperatures and △Th from A to F loci shown in Fig. 3
表 1 不同类型北美原油的组分数据及参数
Table 1. The composition distribution and parameters of different North American oils
组分 黑油 挥发油 临界压力(MPa) 临界温度(K) 偏心因子(ω) 组分摩尔质量(g/mol) 摩尔分数(mol) N2 - 0.42 3.35 126.20 0.040 28.02 CO2 0.84 0.28 7.28 304.20 0.225 44.10 C1 26.57 62.06 4.54 190.60 0.008 16.04 C2 10.74 9.50 4.82 305.40 0.098 30.07 C3 9.27 6.19 4.19 369.80 0.152 44.09 i-C4 0.52 1.28 3.60 408.10 0.176 58.12 n-C4 6.30 2.54 3.75 425.20 0.193 58.12 i-C5 1.26 0.98 3.34 460.40 0.227 72.15 n-C5 3.92 1.39 3.33 469.60 0.251 72.15 C6 1.76 2.26 2.93 507.40 0.296 86.17 C7+ 38.82 - 1.539 699.43 0.670 207.00 - 13.6 1.754 669.01 0.602 180.00 注:据 Aplin et al., 1999 ;i.代表异构烃;n.代表正构烷烃;C7+代表碳数大于等于7的烃类,C7+的临界温度和临界压力根据Riazi and Daubert(1987),偏心因子根据Edmister and Lee(1986). -
[1] Aplin, A.C., Macleod, G., Larter, S.R., et al., 1999. Combined use of confocal laser scanning microscopyand PVT simulation for estimating the composition andphysical properties of petroleum in fluid inclusions. Marine and Petroleum Geology, 16(2): 97-110. doi: 10.1016/S0264-8172(98)00079-8 [2] Asselineau, L., Bogdanic, G., Vidal, J., 1979. A versatile algorithm for calculating vapour-liquid equilibria. Fluid Phase Equilibria, 3(4): 273-290. doi: 10.1016/0378-3812(79)80002-3 [3] Bourdet, J., Pironon, J., 2008. Strain response and re-equilibration of CH4-rich synthetic aqueous fluid inclusions in calcite during pressure drops. Geochimica et Cosmochimica Acta, 72(12): 2946-2959. doi: 10.1016/j.gca.2008.04.012 [4] Burruss, R.C., 1981. Hydrocarbon fluid inclusions in studies of sedimentary diagenesis. In: Hollister, L.S., Crawford, M.L., eds., Fluid inclusions, applications in Petrology: short course handbook. Mineralogical Association of Canada, Toronto, Canada, 6: 138-156. [5] Burruss, R.C., 2003. Petroleum fluid inclusions, an introduction. In: Samson, I., Anderson, A., Marshall, D., eds., Fluid inclusions, analysis and interpretation. mineralogical association of Canada. Mineralogist Association of Canada, Toronto, Canada, 32: 159-174. [6] Chen, H.H., Yao, S.Z., Wang, J.H., 2002. Thermodynamic modeling of fluid-bearing natural gas inclusions for geothermometer and geobarometer of overpressured environments in Qiongdongnan basin, South China Sea. Journal of China University of Geosciences, 13(3): 240-247. http://d.wanfangdata.com.cn/Periodical/dqkx-e200203007 [7] Eadington, P., Hamilton, P., Bai, C., 1991. Fluid history analysis—a new concept for prospect evaluation. The APEA Journal, 31(1): 282-294. http://www.researchgate.net/publication/294696551_Fluid_history_analysis_-_A_new_concept_for_prospect_evaluation [8] Edmister, W.C., Lee, B.K., 1986. Applied hydrocarbon thermodynamics, Vol. 1, 2nd. Gulf Publishing Company Houston, U.S.A. . [9] Feng, Y., Chen, H.H., Ye, J.R., et al., 2009. Reservoir-forming periods and accumulation process of Chaluhe fault depression of Yitong basin. Earth Science —Journal of China University of Geosciences, 34(3): 502-510 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.056 [10] George, S.C., Ruble, T.E., Dutkiewicz, A., et al., 2001. Assessing the maturity of oil trapped in fluid inclusions using molecular geochemistry data and visually-determined fluorescence colours. Applied Geochemistry, 16(4): 451-473. doi: 10.1016/S0883-2927(00)00051-2 [11] Goldstein, R.H., 2001. Fluid inclusions in sedimentary and diagenetic systems. Lithos, 55(1-4): 159-193. doi: 10.1016/S0024-4937(00)00044-X [12] Grimmer, J.O.W., Pironon, J., Teinturier, S., et al., 2003. Recognition and differentiation of gas condensates and other oil types using microthermometry of petroleum inclusions. Journal of Geochemical Exploration, 78-79: 367-371. doi: 10.1016/S0375-6742(03)00137-7 [13] Knapp, H., Doring, R., Oellrich, L., et al., 1982. Vapor-liquid equilibria for mixtures of low boiling substances. Chem. Data Ser., Vol. Ⅵ, DECHEMA. Frankfurt, Germany. [14] Li, H.M., Chen, H.H., Zhao, Y.J., 2009. The hydrocarbon charging events and ages in the volcanic reservoir of Santanghu basin. Earth Science —Journal of China University of Geosciences, 34(5): 785-791 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.087 [15] Liu, D.H., Lu, H.Z., Xiao, X.M., 2007. Oil and gas inclusions and the applications of it in petroleum exploration and development. Guangdong Technological Press, Guangzhou, 100 (in Chinese). [16] Liu, D.H., Xiao, X.M., Mi, J.K., et al., 2003. Determination of trapping pressure and temperature of petroleum inclusions using PVT simulation software—a case study of Lower Ordovician carbonates from the Lunnan Low Uplift, Tarim basin. Marine and Petroleum Geology, 20(1): 29-43. doi: 10.1016/S0264-8172(03)00047-3 [17] McLimans, R.K., 1987. The application of fluid inclusions to migration of oil and diagenesis in petroleum reservoirs. Applied Geochemistry, 2(5-6): 585-603. doi: 10.1016/0883-2927(87)90011-4 [18] Munz, I.A., 2001. Petroleum inclusions in sedimentary basins: systematics, analytical methods and applications. Lithos, 55(1-4): 195-212. doi: 10.1016/S0024-4937(00)00045-1 [19] Nedkvitne, T., Karlsen, D.A., Bjϕrlykke, K., et al., 1993. Relationship between reservoir diagenetic evolution and petroleum emplacement in the Ula Field, North Sea. Marine and Petroleum Geology, 10(3): 255-270. doi: 10.1016/0264-8172(93)90108-5 [20] Okubo, S., 2005. Effects of thermal cracking of hydrocarbons on the homogenization temperature of fluid inclusions from the Niigata oil and gas fields, Japan. Applied Geochemistry, 20(2): 255-260. doi: 10.1016/j.apgeochem.2004.09.001 [21] Peng, D.Y., Robinson, D.B., 1976. A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 15(1): 59-64. doi: 10.1021/i160057a011 [22] Pironon, J., Bourdet, J., 2008. Petroleum and aqueous inclusions from deeply buried reservoirs: experimental simulations and consequences for overpressure estimates. Geochimica et Cosmochimica Acta, 72(20): 4916-4928. doi: 10.1016/j.gca.2008.07.019 [23] Riazi, M.R., Daubert, T.E., 1987. Characterization parameters for petroleum fractions. Industrial & Engineering Chemistry Research, 26(4): 755-759. doi: 10.1021/ie00064a023 [24] Shi, J.X., Li, B.C., Fu, J.M., et al., 1987. Organic inclusions and relationships between organic inclusions and oil and gas. Science in China (Ser. B), 3: 318-326 (in Chinese). http://www.sciencedirect.com/science/article/pii/0146638088902951 [25] Teinturier, S., Elie, M., Pironon, J., 2003. Oil-cracking processes evidence from synthetic petroleum inclusions. Journal of Geochemical Exploration, 78-79: 421-425. doi: 10.1016/S0375-6742(03)00135-3 [26] Tissot, B.P., Welte, D.H., 1978. Petroleum formation and occurrence: a new approach to oil and gas exploration, Springer-Verlag, New York. [27] Tseng, H.Y., Pottorf, R.J., 2002. Fluid inclusion constraints on petroleum PVT and compositional history of the Greater Alwyn—South Brent petroleum system, northern North Sea. Marine and Petroleum Geology, 19(7): 797-809. doi: 10.1016/S0264-8172(02)00088-0 [28] Vityk, M.O., Pottorf, R.H., Chimenti, R.J., et al., 2002. Method to evaluate the hydrocarbon potential of sedimentary basins from fluid inclusions. United States Patent, U.S.A. . [29] Zhao, Y.J., Chen, H.H., 2008. The relationship between fluorescence colors of oil inclusions and their maturities. Earth Science—Journal of China University of Geosciences, 33(1): 91-96 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.012 [30] 丰勇, 陈红汉, 叶加仁, 等, 2009. 伊通盆地岔路河断陷油气成藏过程. 地球科学——中国地质大学学报, 34(3): 502-510. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200903015.htm [31] 李华明, 陈红汉, 赵艳军, 2009. 三塘湖盆地火山岩油气藏油气充注幕次及成藏年龄确定. 地球科学——中国地质大学学报, 34(5): 785-791. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200905011.htm [32] 刘德汉, 卢焕章, 肖贤明, 2007. 油气包裹体及其在石油勘探和开发中的应用. 广州: 广东科技出版社, 100. [33] 施继锡, 李本超, 傅家馍, 等, 1987. 有机包裹体及其与油气的关系. 中国科学(B辑), 3: 318-326. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK198703012.htm [34] 赵艳军, 陈红汉, 2008. 油包裹体荧光颜色及其成熟度关系. 地球科学——中国地质大学学报, 33(1): 91-96. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200801015.htm