Early Evolution of Coniferous Terpenoids in the Long Period Simulation at Low Temperature
-
摘要: 为了研究萜类化合物的早期演化特征, 对松柏类有机质样品进行了长期(超过5年)的低温(80 ℃)模拟实验研究.使用色谱和色谱-质谱联用技术, 测定了样品模拟早期(1年)和模拟后期(5年半)的饱和烃组成特征, 实验结果表明萜类化合物和直链烷烃在沉积后发生了明显的早期演化.利用质谱鉴定出了地质体中较少报道的两种杜松四烯, 一种松香四烯和三种降松香四烯等中间演化产物.据此给出了相对完整的杜松类倍半萜和松香类三环二萜的早期演化途径, 发现该过程主要生成了萜类的各种芳构化衍生物, 细菌等微生物应起到了重要的生物化学促进作用.Abstract: Conifer samples were simulated for more than five years at low temperature (80 ℃) in order to study their early alteration processes. The samples were analyzed by chromatography and gas chromatography-mass spectrometry when the simulation lasted approximately one year and five and a half years, respectively. The results show that the alkanes and terpenoids of coniferous organic matter can undergo a remarkable and rapid alteration after sedimentation. Some seldom reported evolutionary intermediates of terpenoids, i.e. two cadinatetraenes, one abietatetraene and three norabietatetraenes, were identified based on their mass fragments. Then the early evolutionary pathways of cadalane-type sesquiterpenoids and abietane-type diterpenoids were proposed. In these processes, the dehydrogenated and aromatic terpenoids are main evolutionary products, which may be mediated by undefined bacteria.
-
图 2 倍半萜的色谱-质谱总离子流及曲线拟合分峰(以样品A12-1为例,罗马数字指代见表 3)
Fig. 2. TIC trace and multi-peak fitting of overlapping peaks of sesquiterpenoids from sample A12-1
表 1 样品配置
Table 1. Sample composition
样品 说明 P 松树原样 C 柏树原样 A2 有机质50克,高岭土400克,石英砂400克 A7 有机质50克,高岭土400克,石英砂400克,铅粉20克,锌粉20克,石膏200克 A12 有机质50克,高岭土400克,石英砂400克,食盐50克 表 2 样品饱和烃组分的相对组成(rel.%)和直链烷烃参数
Table 2. Composition of main compound classes in the saturate fractions and parameters of n-alkanes
样品 饱和烃组成① 直链烷烃参数 直链烷烃 倍半萜 二萜 总和 主峰 OEP② ΣC22/ΣC23+ 原样 P 22.23 46.19 7.41 75.83 nC27 13.67 0.07 原样 C 2.80 66.30 16.58 85.68 nC33 13.76 0.05 A2 A2-1③ 51.49 10.85 25.92 88.26 nC33 10.67 0.19 A2 A2-2 16.44 21.13 57.08 96.65 nC33 11.60 0.36 A7 A7-1 17.09 6.74 62.95 86.78 nC33 11.17 0.16 A7 A7-2 24.67 13.62 57.52 95.81 nC33 10.83 0.15 A12 A12-1 56.49 2.78 25.92 85.19 nC33 5.51 0.21 A12 A12-2 47.54 9.69 23.88 81.11 nC17~18 1.10 3.30 ① 各类化合物占饱和烃整个组分的百分比,根据色谱图或色谱-质谱的总离子流图积分结果计算;
② $OEP = \left[ {{{\frac{{{{\rm{C}}_{i - 2}} + 6{{\rm{C}}_i} + {{\rm{C}}_{i + 2}}}}{{4{{\rm{C}}_{i - 1}} + 4{{\rm{C}}_{i + 1}}}}}^{{{\left({ - 1} \right)}^{i + 1}}}}} \right]$,其中Ci为主峰碳;
③-1代表模拟早期,-2代表模拟后期.表 3 样品中的倍半萜及其相对丰度
Table 3. Sesquiterpenoids and their relative abundance in the samples
名称 分子式 分子量 基峰 编号 相对丰度① ID② 参考文献 P C A2-1 A2-2 A7-1 A7-2 A12-1 A12-2 长叶蒎烯 C15H24 204 119 Ⅰ 7.3 10.2 4.8 L 古巴烯 C15H24 204 161 Ⅱ 13.5 3.8 22.3 16.2 L 波旁烯 C15H24 204 81 Ⅲ 5.9 3.4 12.0 9.8 11.2 17.0 24.5 L 长叶烯 C15H24 204 161 Ⅳ 18.3 30.2 74.9 60.2 22.3 L, R Philp, 1985 丁香烯 C15H24 204 93 Ⅴ 100.0 5.9 10.6 11.8 L α-雪松烯 C15H24 204 119 Ⅵ 5.2 18.4 15.4 47.9 R 黄永松等, 1991 γ-杜松烯 C15H24 204 161 Ⅶ 22.6 25.1 30.5 16.7 17.8 46.7 L, R 丛浦珠和李笋玉,2003 杜松-4, 9-二烯 C15H24 204 105 Ⅷ 8.7 13.8 76.6 30.2 88.6 37.8 84.1 47.0 L, R 丛浦珠和李笋玉,2003 杜松烯异构体 C15H24 204 161 U1 6.2 51.7 29.3 62.3 37.9 48.1 L, R 丛浦珠和李笋玉,2003 菖蒲烯 C15H22 202 159 Ⅸ 100.0 18.0 18.6 30.0 100.0 21.6 L, R Simoneit and Mazurek, 1982 δ-杜松烯 C15H24 204 161 Ⅹ 24.0 100.0 20.4 3.5 100.0 100.0 6.6 16.8 L 杜松-1, 3, 5, ?-四烯 C15H20 200 157 Ⅺ 1.1 0.7 8.6 17.5 9.4 7.2 Ⅰ 杜松-1(10), 6, 8-三烯 C15H22 202 187 Ⅻ 4.0 1.8 L, R Simoneit and Mazurek, 1982 杜松-1(10), ?, 6, 8-四烯 C15H20 200 185 ⅩⅢ 2.2 0.9 Ⅰ 卡达烯 C15H18 198 183 ⅩⅣ 12.1 100.0 5.2 20.0 2.2 100.0 L, R Simoneit and Mazurek, 1982 注: ①相对丰度是将面积最大的峰归标准化为100后比较计算得出;②ID为化合物的鉴定依据:L为NIST98 MS library;R为参考书或文献;I为质谱碎片解析. 表 4 样品中的二萜及其相对丰度
Table 4. Diterpenoids and their relative abundance in the samples
名称 分子式 分子量 基峰 编号 相对丰度① ID② 参考文献 P C A2-1 A2-2 A7-1 A7-2 A12-1 A12-2 △8, 9-山达海松二烯 C20H32 272 257 ⅩⅤ 6.6 67.7 2.7 41.8 L, R Philp, 1985 海松二烯异构体 C20H32 272 257 U2 4.6 55.0 5.6 25.8 13-异海松二烯 C20H32 272 137 ⅩⅥ 37.0 2.2 18.8 R Philp, 1985; 段毅和罗斌杰, 1990 异海松二烯异构体 C20H32 272 137 U3 2.0 40.6 66.9 2.0 6.0 35.6 60.1 19-降松香三烯 C19H28 256 159 ⅩⅦ 16.8 22.7 1.0 7.9 L, R Simoneit, 1977 异海松-7, 15-二烯 C20H32 272 109 ⅩⅧ 100.0 30.4 27.6 15.0 11.9 23.5 R Simoneit, 1977; 段毅和罗斌杰, 1990 降松香-4, 8, 11, 13-四烯 C19H26 254 239 ⅩⅠⅩ 15.5 52.9 1.3 8.5 16.9 R Simoneit and Mazurek, 1982 降松香-4(19), 8, 11, 13-四烯 C19H26 254 197 ⅩⅩ 8.5 25.0 7.1 6.7 R Philp, 1985 18-降松香三烯 C19H28 256 159 ⅩⅩⅠ 23.6 27.9 11.3 16.2 20.6 13.4 L, R Simoneit, 1977 降松香-3, 8, 11, 13-四烯 C19H26 256 239 ⅩⅩⅡ 9.8 24.2 1.5 7.7 1.4 5.8 R Philp, 1985 松香-?, 8, 11, 13-四烯 C20H28 268 183 ⅩⅩⅢ 40.5 33.7 20.8 15.7 28.9 12.9 I 脱氢松香烷 C20H30 270 255 ⅩⅩⅣ 17.5 0.4 100.0 100.0 81.3 59.2 76.5 28.9 L, R Simoneit and Mazurek, 1982 西蒙内莉烯 C19H24 252 237 ⅩⅩⅤ 4.3 15.7 3.5 8.6 1.2 5.6 R Simoneit and Mazurek, 1982 贝壳衫-16-烯 C20H32 272 272 ⅩⅩⅥ 56.2 100.0 100.0 100.0 100.0 100.0 L, R 丛浦珠和李笋玉,2003 惹烯 C18H18 234 219 ⅩⅩⅦ 40.5 91.2 2.3 L, R Simoneit and Mazurek, 1982 注: ①,②说明同表 3. -
[1] Cong, P.Z., Li, S.Y., 2003. Mass spectrometry of natural products. Chinese Medicine and Technology Publishing House, Beijing (in Chinese). [2] Cranwell, P.A., 1985. Long-chain unsaturated ketones in recent lacustrine sediments. Geochimica et Cosmochimica Acta, 49(7): 1545-1551. doi: 10.1016/0016-7037(85)90259-5 [3] Dai, S.F., Chou, C.L., Yue, M., et al., 2005. Mineralogy and geochemistry of a Late Permian coal in the Dafang coalfield, Guizhou, China: influence from siliceous and iron-rich calcic hydrothermal fluids. International Journal of Coal Geology, 61(3-4): 241-258. doi: 10.1016/j.coal.2004.09.002 [4] Dehmer, J., 1995. Petrological and organic geochemical investigation of recent peats with known environments of deposition. International Journal of Coal Geology, 28(2-4): 111-138. doi: 10.1016/0166-5162(95)00016-X [5] Del Rio, J.C., Gonzalez-vila, F.J., Martin, F., 1992. Variation in the content and distribution of biomarkers in two closely situated peat and lignite deposits. Organic Geochemistry, 18(1): 67-78. doi: 10.1016/0146-6380(92)90144-M [6] Duan, Y., Luo, B.J., 1990. Distributional and evolutionary characteristics of the tri-and tetarcyclic diterpenoids in modern marsh sediments. Acta Sedimentologica Sinica, 8(2): 113-119 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB199002015.htm [7] Hajje, N., Jaffe, R., 2006. Molecular characterization of Cladium peat from the Florida Everglades: biomarker associations with humic fractions. Hydrobiologia, 569(1): 99-112. doi: 10.1007/s10750-006-0125-0 [8] Huang, D.F., 1999. Advances in hydrocarbon generation theory (Ⅰ): generation and evolution model for immature oils and hydrocarbon. Journal of Petroleum Science and Engineering, 22(1-3): 121-130. doi: 10.1016/S0920-4105(98)00061-8 [9] Huang, Y.S., Fu, J.M., Sheng, G.Y., et al., 1991. Identification and confirmation of α-cedrene cuparene in high wax oils and altered source rocks. Geochimica, 20(3): 276-282 (in Chinese with English abstract). http://ci.nii.ac.jp/naid/10026606252 [10] Martin, J.J.V., Yu, Z.T., Mohn, W.W., 1999. Recent advances in understanding resin acid biodegradation: microbial diversity and metabolism. Arch Microbiol, 172(3): 131-138. doi: 10.1007/s002030050752 [11] Otto, A., Simoneit, B.R.T., 2001. Chemosystematics and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz formation, Saxony, Germany. Geochimica et Cosmochimica Acta, 65(20): 3505-3527. doi: 10.1016/S0016-7037(01)00693-7 [12] Otto, A., Walther, H., Puttmann, W., 1997. Sesqui and diterpenoid biomarkers preserved in Taxodum-rich Oligocene oxbow lake clays, Weisselster basin, Germany. Organic Geochemistry, 26(1-2): 105-115. doi: 10.1016/S0146-6380(96)00133-7 [13] Pancost, R.D., Baas, M., Geel, B.V., et al., 2002. Biomarkers as proxies for plant inputs to peats: an example from a sub-boreal ombrotrophic bog. Organic Geochemistry, 33(7): 675-690. doi: 10.1016/S0146-6380(02)00048-7 [14] Peters, K.E., Moldowan, J.M., 1993. The Biomarker Guide: interpreting molecular fossils in petroleum and ancient sediments. Prentice hall, Englewood Cliffs, New Jersey. [15] Philp, R.P., 1985. Fossil fuel biomarkers. Applications and spectra. Methods in Geochemistry and Geophysik, 23. Elsevier, Amsterdam. [16] Qin, S.J., Sun, Y.Z., Tang, Y.G., 2008. Early hydrocarbon generation of algae and influences of inorganic environments during low temperature simulation. Energy Exploration & Exploitation, 26(6): 377-396. doi: 10.1260/014459808788262251 [17] Shi, J.Y., Xiang, M.J., Qu, D.C., 2001. Thermal simulation experiment and evolution of fatty acid in immature oil source rocks. Chinese Science Bulletin, 46(18): 1567-1572 (in Chinese). doi: 10.1360/csb2001-46-18-1567 [18] Simoneit, B.R.T., 1977. Diterpenoid compounds and other lipids in deep-sea sediments and their geochemical significance. Geochimica et Cosmochimica Acta, 41(4): 463-476. doi: 10.1016/0016-7037(77)90285-X [19] Simoneit, B.R.T., Grimalt, J.O., Wang, T.G., et al., 1986. Cyclic terpenoids of contemporary resinous plant detritus and of fossil woods, ambers and coals. Organic Geochemistry, 10(4-6): 877-889. doi: 10.1016/S0146-6380(86)80025-0 [20] Simoneit, B.R.T., Mazurek, M.A., 1982. Organic matter of the troposphere—Ⅱ. Natural background of biogenic lipid matter in aerosols over the rural western United States. Atmospheric Environment, 16(9): 2139-2159. doi: 10.1016/0004-6981(82)90284-0 [21] Sun, Y.Z., Lu, J.L., Chen, J.P., et al., 2006. Experimental study of decay conditions of organic matter and its significant for immature oil generation. Energy Exploration & Exploitation, 24: 161-170. doi: 10.1260/014459806779367473 [22] Sun, Y.Z., Qin, S.J., Wang, P., et al., 2008. Experimental study of earlier formation processes of macerals. World Journal of Engineering, 5(1): 101- 102. http://www.researchgate.net/publication/262822762_Experimental_study_of_earlier_formation_processes_of_macerals [23] Sun, Y.Z., Qin, S.J., Zhao, C.L., et al., 2010. Experimental study of early formation processes of macerals and sulfides. Energy & Fuels, 24(2): 1124-1128. doi: 10.1021/ef901019b [24] Wang, T.G., Zhong, N.N., Hou, D.J., et al., 1997. Several genetic mechanisms of immature crude oils in China. Acta Sedimentologic Sinica, 15(2): 75-83 (in Chinese with English abstract). http://www.researchgate.net/publication/285088193_Several_genetic_mechanisms_of_immature_crude_oils_in_China [25] 丛浦珠, 李笋玉, 2003. 天然有机质谱学. 北京: 中国医药科技出版社. [26] 段毅, 罗斌杰, 1990. 现代沼泽沉积物中三、四环萜类的分布及演化特征. 沉积学报, 8(2): 113-119. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199002015.htm [27] 黄永松, 傅家漠, 盛国英, 等, 1991. 高蜡原油及其生油岩中新生物标志物——雪松烯和花侧柏烯. 地球化学, 20(3): 276-282. doi: 10.3321/j.issn:0379-1726.1991.03.009 [28] 史继扬, 向明菊, 屈定创, 2001. 未熟-低熟烃源岩中脂肪酸的热模拟实验及演化. 科学通报, 46(18): 1567-1572. doi: 10.3321/j.issn:0023-074X.2001.18.017 [29] 王铁冠, 钟宁宁, 候读杰, 等, 1997. 中国低熟油的几种成因机制. 沉积学报, 15(2): 75-83. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB702.015.htm