Formation Water of Near-Critical Properties and Its Effects on the Processes of Hydrocarbon Generation and Expulsion
-
摘要: 研究利用特制的地层孔隙热压模拟实验装置, 开展了模拟地层孔隙空间高压液态水热体系烃源岩生排烃模拟实验.模拟实验施加的流体压力为38±2 MPa, 温度为290~390 ℃.模拟实验结果显示了有关高压液态水及其与之相联系的流体压力和孔隙空间等因素对烃源岩生排烃影响作用的一些重要现象, 实验发现高压液态水介质条件有利于液态油的生成和保存, 不利于液态油向气态烃的转化, 而且干酪根的生烃潜力和排油效率有一定的提高.这些新的实验现象可能主要与近临界特性的高压液态地层水的作用有关, 进一步推断近临界特性的高压液态水参与干酪根向油气的转化反应, 增加了水对油气的溶解能力.在地下实际烃源岩生排烃的温压(100~200 ℃, 30~120 MPa)条件下, 岩石孔隙中的地层水是一种相对低温高压压缩液态水, 这种地层水可能具有近临界特性, 对烃源岩生排烃过程有重要影响.但目前对这种现象的机理和石油地质意义还知之较少.因此, 加强高压地层水近临界条件下烃源岩生排烃热压模拟实验研究, 对进一步深入理解地层条件下的近临界水介质、流体压力、孔隙空间因素对生排烃过程的影响, 深化烃源岩生排烃机理的探讨, 建立地质尺度上的烃源岩生排烃动力学模型, 都具有重要的理论和实际意义.Abstract: A special simulation experimental device using a high pressure liquid water system in the similar geological pore space with fluid pressures around 38±2 MPa and temperatures ranging from 290 ℃ to 390 ℃ is used to simulate hydrocarbon generation and expulsion from source rocks in this study. The new experimental results show many important phenomena about the generation and expulsion influenced by high-pressure liquid water linking with fluid pressure and pore space. It is found that high-pressure liquid water medium condition facilitates the generation and preservation of liquid oil and improves the potential of hydrocarbon generation from kerogen and the efficiency of oil expulsion but it is not conducive to the conversion of liquid hydrocarbon to gaseous hydrocarbon. It is considered that these new experimental phenomena may be mainly related to the effects of high-pressure liquid water of near-critical properties. It is further inferred that the high-pressure liquid water of near-critical characteristics is involved in the conversion of kerogen to oil and gas reactions, to increase the solubility of the oil and gas in water. Under the appropriate geological conditions, hydrocarbon generation and expulsion from source rocks occur at temperatures ranging from 100 ℃ to 200 ℃ and pressures ranging from 30 MPa to 120 MPa in most cases, suggesting that actual formation pore water could be a compressed state liquid water with near-critical properties at a relatively low temperature and high-pressure environment. This high-pressure liquid water of near-critical characteristics may have important effect on the processes of petroleum generation and expulsion. However, the mechanism and geological significance for petroleum exploration of these phenomena are still not clear. Further studies are necessary for such simulation experiments under high pressure liquid water condition for better understanding of the actual roles of the factors such as the near-critical water medium, fluid pressure and pore space. It is believed that this study may assist to establish the improving models of dynamics of hydrocarbon generation and expulsion in geological scale.
-
表 1 高温高压液态水与氮气+水蒸汽介质的气油产率对
Table 1. The yields of gas and oil under high temperature/pressure water medium and nitrogen medium
流体介质 模拟温度(℃) Ro(%) CO2(m3/TOC) H2(m3/TOC) 烃气(kg/TOC) 排出油(kg/TOC) 残留油(kg/TOC) 总油(kg/TOC) 总烃(kg/TOC) 290 0.78 3.06 0.31 0.90 3.01 14.90 17.91 18.81 320 0.94 17.46 0.04 5.94 16.75 33.37 50.12 56.06 高温高压液态水a 340 1.13 20.27 0.04 10.33 32.47 30.39 62.86 78.19 370 1.56 28.51 0.12 39.31 45.53 16.38 61.91 101.21 390 1.94 39.94 0.17 58.78 44.60 1.56 46.16 104.94 290 0.71 32.70 0.10 1.47 1.05 9.98 11.03 12.49 320 0.84 29.99 0.20 18.56 5.91 22.41 28.32 46.88 高温高压氮气+水蒸汽 340 1.05 61.49 0.14 28.15 11.30 31.50 42.80 70.95 370 1.42 75.66 0.17 64.10 15.48 16.71 22.18 86.29 390 1.71 57.02 16.67 65.57 10.02 3.00 13.02 78.59 注:a.地层流体压力38 MPa;静岩压力80 MPa;生烃空间为9.5 mL. 表 2 高温高压下流体介质对残余固体热解参数的影响
Table 2. The pyrolysis data of the residual kerogen influenced by two fluid mediums under high pressure and temperature conditions
模拟温度(℃) S2-a(mg/g) S2-b(mg/g) Tmax-a(℃) Tmax-b(℃) PC-a(%) PC-b(%) TOC-a(%) TOC-b(%) HI-a(mg/g·c) HI-b(mg/g·c) 290 87.59 75.53 426 425 8.09 6.95 72.97 68.06 120 111 320 78.32 54.61 438 435 7.45 5.43 75.19 68.80 104 79 340 56.26 47.42 455 458 5.58 4.52 71.28 74.88 79 63 370 13.58 25.97 476 469 1.51 2.79 55.33 74.89 25 35 390 6.84 7.90 501 502 0.81 0.92 52.68 57.99 13 14 注:a.表示高压液态水介质;b.表示高压氮气+水蒸汽介质. -
[1] Carr, A.D., Snape, C.E., Meredith, W., et al., 2009. The effect of water pressure on hydrocarbon generation reactions: some inferences from laboratory experiments. Petroleum Geoscience, 15: 17-26. doi: 10.1144/1354-079309-797 [2] Chen, J.Y., Liu, G.Y., Jin, L.J., 2009. Water in the earth's interior and abiotic formation of hydrocarbon. Earth Science Frontiers, 16(1): 33-40 (in Chinese with English abstract). [3] Chen, J.Y., Zhang, H., Zheng, H.F., et al., 2006. Insitu visualization of pyrolysis of organic matter in high-temperature and high-pressure water—taking kerogen and asphalt as an example. Petroleum Geology & Experiment, 28(1): 73-77 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD200601013.htm [4] Chen, X.D., Wang, X.B., 1999. Pressure effect on organic matter maturation and petroleum generation. Advance in Earth Sciences, 14(1): 31-36 (in Chinese with English abstract). http://www.researchgate.net/publication/308019972_Pressure_effect_on_organic_matter_maturation_and_petroleum_generation [5] Cheng, K.M., Wang, Z.Y., Zhong, N.N., et al., 1996. Theory and practice of oil and gas's generation in carbonate rock. Petroleum Industry Press, Beijing, 139-175 (in Chinese). [6] Evans, R.J., Felbeck, G.T., 1983a. High temperature simulation of petroleum formation—(Ⅰ) the pyrolysis of Green River Shale. Org. Geochem. , 4: 135-144. doi: 10.1016/0146-6380(83)90034-7 [7] Evans, R.J., Felbeck, G.T., 1983b. High temperature simulation of petroleum formation—(Ⅱ) effect of inorganic sedimentary constituents on hydrocarbon formation. Org. Geochem. , 4: 145-152. doi: 10.1016/0146-6380(83)90034-7 [8] Gao, F., Lü, X.Y., 2006. Kinetics of pinacol rearrangement in high temperature liquid water. Journal of Chemical Industry and Engineering, 57(1): 57-60 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HGSZ200601010.htm [9] Gao, G., 2000. Method of petroleum-generating simulation and its petroleum geological significance. Natural Gas Geoscience, 11(2): 25-29 (in Chinese with English abstract). [10] Guan, D.F., Wang, G.L., Zhang, J.G., et al., 2005. New idea about hydrocarbon generation and pool formation. Petroleum Geology & Experiment, 27(5): 425-432 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/sysydz200505001 [11] He, S., He, Z.L., Yang, Z., et al., 2009. Characteristics, well-log responses and mechanisms of overpressures within the Jurassic formation in the central part of Junggar basin. Earth Science—Journal of China University of Geosciences, 34(3): 457-470 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.051 [12] Helgeson, H.C., Knox, A.M., Owens, C.E., et al., 1993. Petroleum, oil field waters and authigenic mineral assemblages are they in metastable equilibrium in hydrocarbon reservoirs. Geochimica et Cosmochimica Acta, 57(14): 3295-3339. doi: 10.1016/0016-7037(93)90541-4 [13] Hu, B.Q., Lü, G.X., Wang, F.Z., et al., 2008. The critical singularities of water and its significance in the hydrothermal mineralization of uranium. Uranium Geology, 24(3): 129-136 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKDZ200803000.htm [14] Huang, Z.L., Zhang, S.H., Zhong, N.N., 2003. Simulation experiment of gas generation in carbonate rocks. Chinese Journal of Geology, 38(4): 455-459 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX200304003.htm [15] Jiang, F., Zhang, Y.L., Du, J.G., 1996. Advance of pyrolysis experimentation on hydrocarbon genesis. Advance in Earth Sciences, 11(5): 453-459 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ605.004.htm [16] Kuhlmann, B., Amett, E.M., Siskin, M., 1994. Classical organic reactions in pure superheated water. J. Org. Chem. , 59(11): 3098-3101. doi: 10.1021/jo00090a030 [17] Lewan, M.D., 1997. Experiments on the role of water in petroleum formation. Geochimica et Cosmochimica Acta, 61(17): 3691-3723. doi: 10.1016/S0016-7037(97)00176-2 [18] Lewan, M.D., 1998. Sulphur-radical control on petroleum formation rates. Nature, 391: 164-166. doi: 10.1038/34391 [19] Lewan, M.D., Winters, J.C., Mcdonald, J.H., 1979. Generation of oil-like pyrolyzates from organic-rich shales. Science, 203(4383): 897-899. doi: 10.1126/science.203.4383.897 [20] Liu, B.Q., Cai, B., Fang, J., 1990. A simulation aboutexperiment of petroleum origin on kerogen from shales of the Lower Xiamaling Formation in the Upper Proterozoic. Experimental Petroleum Geology, 12 (2): 147-161(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD199002004.htm [21] Liu, W.H., Wang, W.C., 2000. The organic (biogenic) and inorganic (non-biogenic) sources of hydrocarbons—thought on theory of oil and gas formation. Bulletin of Mineralogy, Petrology and Geochemistry, 19(3): 179-186 (in Chinese with English abstract). http://www.researchgate.net/publication/313167944_The_organic_biogenic_and_inorganic_nonbiogenic_sources_of_hydrocarbons-thought_on_theory_of_oil_and_gas_formation [22] Lü, X.Y., He, L., Zheng, Z.S., et al., 2003. Green chemical processes in near critical water. Chemical Industry and Engineering Progress, 22(4): 477-481 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HGJZ200305009.htm [23] Qin, J.Z., Liu, J.W., Liu, B.Q., et al., 2002. Hydrocarbon yield and geochemical parameters affected by heating time and added water amount in the simulation test. Petroleum Geology & Experiment, 24(2): 152-157 (in Chinese with English abstract). [24] Seewald, J.S., 2003. Organic-inorganic interactions in petroleum producing sedimentary basins. Nature, 426(20): 327-333. doi: 10.1038/nature02132 [25] Song, C.C., Hu, H.Q., 2002. Thermochemical liquefaction of biomass in high pressure water. Journal of Sichuan University (Engineering Science Edition), 34(5): 59-62 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-SCLH200205014.htm [26] Song, C.C., Wang, G., Hu, H.Q., 2004. Progress in thermochemical liquefaction of biomass. Acta Energiae Solaris Sinica, 25(2): 242-248 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TYLX200402022.htm [27] Sun, H., Lü, X.Y., Chen, L., 2007. Comparison of hydrolysis kinetics of different vegetable oils in near-critical water. Journal of Chemical Industry and Engineering, 58(4): 925-929 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HGSZ200704021.htm [28] Tissot, B.P., Welte, D.H., 1978. Petroleum formation and occurrence—a new approach to oil and gas exploration. Springer-Verlag, Berlag, Berlin Heidelgerg, New York. [29] Wang, X., Duan, P.G., Dai, L.Y., 2005. Application of supercritical/near-critical water in organic chemical reactions. Chemical Bulletin, 68(53): 1-6 (in Chinese with English abstract). [30] Wang, X.F., Liu, W.H., Xu, S.C., et al., 2006. The thermal simulation experiment of water in the organic matter in the formation of gaseous hydrocarbon evolution. Advance in Sciences, 16(10): 1275-1281 (in Chinese with English abstract). [31] Wang, X.X., Wang, G.L., Cai, J.G., et al., 2006. Organic-clay complex and hydrocarbon generation. Petroleum Industry Press, Beijing, 126-134 (in Chinese). [32] Wang, Z.M., Luo, X.R., Chen, R.Y., et al., 2006. Effect and influences of pore pressures on organic matter's maturation. Advances in Earth Science, 21(1): 39-46 (in Chinese with English abstract). http://www.researchgate.net/publication/310828747_Effect_and_influences_of_pore_pressures_on_organic_matter's_maturation [33] Wang, Z.P., Fu, X.T., Lu, S.F., et al., 2001. An analogue experiment of gas generating by crude oil cracking, characters of products and its significance. Natural Gas Industry, 21(3): 12-15 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG200103004.htm [34] Xiong, Y.Q., Geng, A.S., Wang, Y.P., et al., 2001. The simulation of secondary hydrocarbon generation of kerogen dynamics. Science in China (Ser. D), 31(4): 315-320 (in Chinese). [35] Xu, Y.S., Hou, W., Zheng, H.F., et al., 1995. The particularity of supercritical water and the connotation of study on deep earth's materials. Advance in Earth Sciences, 10(5): 445-449 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ505.009.htm [36] Zhang, R.H., Zhang, X.T., Hu, S.M., 2009. Critical fluids and mineral (rock) interactions in extreme conditions of the Earth interior. Earth Science Frontiers, 16(1): 53-67 (in Chinese with English abstract). [37] Zheng, L.J., Qin, J.Z., He, S., et al., 2009. Preliminary study of formation porosity thermocompression simulation experiment of hydrocarbon generation and expulsion. Petroleum Geology & Experiment, 31(3): 296-302, 306 (in Chinese with English abstract). http://www.cqvip.com/QK/95265X/200903/30850386.html [38] Zhou, S.X., Zou, H.L., Xie, Q.L., et al., 2006. Organic-inorganic interactions during the formation of oils in sedimentary basin. Natural Gas Geoscience, 17(1): 42-47 (in Chinese with English abstract). http://www.oalib.com/paper/1417808 [39] Zou, Y.R., Shuai, Y.H., Kong, F., et al., 2004. Experiments on petroleum generation-considerations and outlook. Petroleum Geology & Experiment, 26(4): 375-382 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD200404012.htm [40] 陈晋阳, 刘桂洋, 金鹿江, 2009. 地球内部水与无机成烃. 地学前缘, 16(1): 33-40. doi: 10.3321/j.issn:1005-2321.2009.01.006 [41] 陈晋阳, 张红, 郑海飞, 等, 2006. 高温高压下水中有机质降解过程的原位观测—以干酪根和沥青质为例. 石油实验地质, 28(1): 73-77. doi: 10.3969/j.issn.1001-6112.2006.01.014 [42] 陈晓东, 王先彬, 1999. 压力对有机质成熟和油气生成的影响. 地球科学进展, 14(1): 31-36. doi: 10.3321/j.issn:1001-8166.1999.01.008 [43] 程克明, 王兆云, 钟宁宁, 等, 1996. 碳酸盐岩油气生成理论与实践. 北京: 石油工业出版社, 139-175. [44] 高飞, 吕秀阳, 2006. 高温液态水中的频那醇重排反应动力学. 化工学报, 57(1): 57-60. doi: 10.3321/j.issn:0438-1157.2006.01.011 [45] 高岗, 2000. 油气生成模拟方法及其石油地质意义. 天然气地球科学, 11(2): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200002004.htm [46] 关德范, 王国力, 张金功, 等, 2005. 成烃成藏理论新思维. 石油实验地质, 27(5): 425-432. doi: 10.3969/j.issn.1001-6112.2005.05.001 [47] 何生, 何治亮, 杨智, 等, 2009. 准噶尔盆地腹部侏罗系超压特征和测井响应以及成因. 地球科学——中国地质大学学报, 34(3): 457- 470. [48] 胡宝群, 吕古贤, 王方正, 等, 2008. 水的临界奇异性及其对热液铀成矿作用的意义. 铀矿地质, 24(3): 129-136. doi: 10.3969/j.issn.1000-0658.2008.03.001 [49] 黄志龙, 张四海, 钟宁宁, 2003. 碳酸盐岩生气的热模拟实验. 地质科学, 38(4): 455-459. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200304003.htm [50] 姜峰, 张友联, 杜建国, 1996. 油气生成热模拟实验研究进展. 地球科学进展, 11(5): 453-459. doi: 10.3321/j.issn:1001-8166.1996.05.005 [51] 刘宝泉, 蔡冰, 方杰, 1990. 上元古界下马岭组页岩干酪根的油气生成模拟实验. 石油实验地质, 12 (2): 147-161. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD199002004.htm [52] 刘文汇, 王万春, 2000. 烃类的有机(生物)与无机(非生物)来源——油气成因理论思考之二. 矿物岩石地球化学通报, 19(3): 179-186. doi: 10.3969/j.issn.1007-2802.2000.03.007 [53] 吕秀阳, 何龙, 郑赞胜, 等, 2003. 近临界水中的绿色化工过程. 化工进展, 22(4): 477-481. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ200305009.htm [54] 秦建中, 刘井旺, 刘宝泉, 等, 2002. 加温时间、加水量对模拟实验油气产率及地化参数的影响. 石油实验地质, 24(2): 152-157. doi: 10.3969/j.issn.1001-6112.2002.02.011 [55] 宋春财, 胡浩权, 2002. 生物质秸秆在水中热化学液化研究. 四川大学学报(工程科学版), 34(5): 59-62. doi: 10.3969/j.issn.1009-3087.2002.05.015 [56] 宋春财, 王刚, 胡浩权, 2004. 生物质热化学液化技术研究进展. 太阳能学报, 25(2): 242-248. doi: 10.3321/j.issn:0254-0096.2004.02.022 [57] 孙辉, 吕秀阳, 陈良, 2007. 不同植物油脂在近临界水中水解反应动力学的比较. 化工学报, 58(4): 925-929. doi: 10.3321/j.issn:0438-1157.2007.04.022 [58] 王晓峰, 刘文汇, 徐水昌, 等, 2006. 水在有机质形成气态烃演化中作用的热模拟实验研究. 自然科学进展, 16(10): 1275-1281. doi: 10.3321/j.issn:1002-008X.2006.10.011 [59] 王行信, 王国力, 蔡进攻, 等, 2006. 有机粘土复合体与油气生成. 北京: 石油工业出版社, 126-134. [60] 王炫, 段培高, 戴立益, 2005. 超(近)临界水在有机化学反应中的应用. 化学通报, 68(53): 1-6. [61] 王兆明, 罗晓容, 陈瑞银, 等, 2006. 有机质热演化过程中地层压力的作用与影响. 地球科学进展, 21(1): 39-46. doi: 10.3321/j.issn:1001-8166.2006.01.006 [62] 王振平, 付晓泰, 卢双舫, 等, 2001. 原油裂解成气模拟实验、产物特征及其意义. 天然气工业, 21(3): 12-15. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200103004.htm [63] 熊永强, 耿安松, 王云鹏, 等, 2001. 干酪根二次生烃动力学模拟实验研究. 中国科学(D辑), 31(4): 315-320. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200104006.htm [64] 徐有生, 侯渭, 郑海飞, 等, 1995. 超临界水的特性及其对地球深部物质研究的意义. 地球科学进展, 10(5): 445-449. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ505.009.htm [65] 张荣华, 张雪彤, 胡书敏, 2009. 临界区流体与矿物和岩石在地球内部极端条件下的反应. 地学前缘, 16(1): 53-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200901013.htm [66] 郑伦举, 秦建中, 何生, 等, 2009. 地层孔隙热压生排烃模拟实验初步研究. 石油实验地质, 31(3): 296-302, 306. doi: 10.3969/j.issn.1001-6112.2009.03.017 [67] 周世新, 邹红亮, 解启来, 等, 2006. 沉积盆地油气形成过程中有机-无机相互作用. 天然气地球科学, 17(1): 42-47. doi: 10.3969/j.issn.1672-1926.2006.01.008 [68] 邹艳荣, 帅燕华, 孔枫, 等, 2004. 油气生成过程实验研究的思考与展望. 石油实验地质, 26(4): 375-382. doi: 10.3969/j.issn.1001-6112.2004.04.012