Experimental Simulation of Faults Controlling Oil Migration and Accumulation in the Central Part of Junggar Basin and Its Significance for Petroleum Geology
-
摘要: 根据准噶尔盆地腹部地区二维和三维地震断裂构造样式解释、深浅层断裂生长指数和活动速率计算及声发射各主要构造运动期最大主应力值测试, 结合盆地区域构造演化与油气成藏等研究成果, 研究了盆地腹部地区断裂系统的形成演化、基本特征及其控油模式, 并转化为实验模型, 模拟了单一相(油相)连续、稳态流体运动条件下, 深、浅两套断裂输导体系中石油的运移和聚集过程.结果表明盆地腹部地区受周缘板块的相互碰撞产生的挤压和走滑构造作用及多期次构造运动的影响, 断裂发育, 纵向上明显存在深、浅层两套不同性质的断裂系统, 深层为基底卷入式压扭性逆冲断裂系统, 浅层为盖层滑脱型张扭性正断层系统, 其分别形成于海西运动中晚期和燕山运动早中期等强烈构造活动时期; 高渗透性断裂带的确是油气快速运移的优势通道, 盆地腹部地区深、浅层断层均是石油向上运移的主要输导体, 断裂带渗透率大小决定着石油运移的方向和路径.在断层带顶部存在盖层封闭的条件下, 石油在断层带中的运移呈不均匀地向上运动, 断层带中含油饱和度自上而下增加, 在向下增加的过程, 石油倾向于在区域性盖层之下储层物性好的砂层中运移, 而且是优先进入断裂上盘渗透率较大的砂层中, 随着断裂带含油饱和度的不断地增加和断裂上盘储层物性好的砂层中进油量不断增多, 进行侧向运移, 最终聚集成藏, 尔后再进入断裂下盘相应的砂层中, 进油量较少; 而物性较差的砂层中很少有石油进入.该实验结果得到了盆地腹部地区断裂两侧储层流体地球化学分析测试数据的佐证, 对深化断裂输导体系下石油运移聚集成藏的理论认识与指导该地区的油气勘探实践均具有重要意义.Abstract: Based on the studies on the faults system in the central part of Junggar basin such as the 2D and 3D seismic faults structural style interpretation, deep and shallow layer fault growth index, fault activity rate calculation, and maximum principle stress test in various tectonic events analyzed from acoustic emission data, as well as study on the regional structural evolution and hydrocarbon migration and accumulation, the faults system formation, evolution, basic characteristics and hydrocarbon-controlling model are studied through experiments, which simulate continuous, stable and single phase hydrocarbon (oil phase) migration and accumulation process, respectively in deep and shallow faults system. Results show that central part of Junggar basin experienced compression and strike-slip resulted from collision by Peripheral plates, leading to well-developed faults. There occur two types of faults system in vertical with different property in the deep and shallow layers. The deep one is basement-involved thrust-type pressure-shear fault system; the shallow one is seal detachment transtension normal fault system, respectively formed in the middle-late Hercynian and early-middle Yanshan. High permeable fault belt is truly hydrocarbon predominant migration pathway. Deep and shallow fault system in the central part of Junggar basin is main pathways for hydrocarbon migration. The permeability of fault belts determines the direction and pathway of hydrocarbon migration. With the seal from the top of fault system, hydrocarbon moves up heterogeneously within the fault, with oil saturation increasing downward. Hydrocarbon tends to migrate within the reservoir with good prosperity under regional seal, and enters prior reservoir with high permeability in the upper wall of fault. With the hydrocarbon saturation within fault and hydrocarbon volume increasing in the upper hand of fault, hydrocarbon flows horizontally and accumulates somewhere, and then goes into lower wall of fault with small amount of oil accumulation, thus almost no oil enters the poor prosperity reservoir. This experiment result proves to be correct by the fluid geochemical analytical data of both sides of the fault, which is significant for understanding the oil migration and accumulation in the fault system in the central part of Junggar basin, and is useful for guiding oil exploration and development.
-
图 1 准噶尔盆地断裂与油气藏分布(据王宜林等, 2002, 有修改)
Fig. 1. The location map of faults and reservoirs in the Junggar basin
表 1 实验模型中储层物性参数选取
Table 1. Reservoir physical property parameters for the experimental model
层系 孔隙度(%) 渗透率(10-3 μm2) 储层质量 代表地区 模型中储层粒径(mm) 头屯河组(J2t) 6.80 0.15 差 莫北地区 硅胶 西山窑组(J2x) 7.30 0.12 差 莫北地区 硅胶 三工河组二段(J1s2) 14.06 29.47 好 莫北地区 0.80~0.90 八道湾组(J1b) 9.27 0.41 较差 莫北地区 0.10~0.15 百口泉组(T1b) 9.64 0.86 较差 夏盐地区 0.15~0.25 石炭系-二叠系(C-P) 14.20 6.27 好 石西地区 0.60~0.70 -
[1] Allan, U.S., 1989. Model for hydrocarbon migration and entrapment within faulted structures. AAPG Bulletin, 73(7): 803-811. doi: 10.1306/44B4A271-170A-11D7-8645000102C1865D [2] Antonellini, M., Aydin, A., 1994. Effect of faulting on fluid in porous sandstones: petrophysical properties. AAPG Bulletin, 78(3): 355-377. http://www.researchgate.net/publication/255156381_Effect_of_Faulting_on_Fluid_Flow_in_Porous_Sandstones_Petrophysical_Properties [3] Antonellini, M., Aydin, A., 1995. Effect of faulting on fluid flow in porous sandstones: geometry and spatial distribution. AAPG Bulletin, 79(5): 642-671. doi: 10.1306/8D2B1B60-171E-11D7-8645000102C1865D [4] Berg, R.R., Avery, A.H., 1995. Sealing properties of Tertiary growth faults, Texas Gulf Coast. AAPG Bulletin, 79(3): 375-392. doi: 10.1306/8D2B1534-171E-11D7-8645000102C1865D [5] Bouvier, J.D., Kaars-Sijpesteijn, C.H., Kluesner, D.F., 1989. Three-dimensional seismic interpretation and fault sealing investigation, Nun River Field, Nigeria. AAPG Bulletin, 73(11): 1397-1414. doi: 10.1306/44B4AA5A-170A-11D7-8645000102C1865D [6] Chen, F.J., Tian, S.C., 1989. Compaction and hydrocarbon migration. China University of Geosciences Press, Wuhan, 26-38 (in Chinese). [7] Chen, H.H., Li, S.T., 1996. New development in active thermal fluids and hydrocarbon accumulation and mineralization. Earth Science Frontiers, 3(3-4): 259-262 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY604.013.htm [8] Ding, W.L., Jin, Z.J., Zhang, Y.J., et al., 2002. Fault controls on oil and gas in Junggar basin, Xinjiang. Earth Science Frontiers, 9(3): 102 (in Chinese with English abstract). [9] Du, C.G., Hao, F., Zou, H.Y., et al., 2007. Progress and problems of faults conduit systems for hydrocarbon migration. Geological Science and Technology Information, 26(1): 51-56 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200701009.htm [10] Engelder, J.T., 1974. Cataclasis and the generation of fault gouge. Geological Society of American Bulletin, 85(10): 1515-1522. doi:10.1130/0016-7606(1974)85<1515 [11] Gao, J., Lü, Y.F., Tian, Q.F., 2009. Analysis of hydrocarbon migration through the fault based on the interior structure of fault zone. Journal of Daqing Petroleum Institute, 31(2): 4-7, 122 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQSY200702002.htm [12] Gibson, R.G., 1994. Fault-zone seals in Siliciclastic strata of the Columbus basin, offshore Trinidad. AAPG Bulletin, 78(9): 1372-1385. doi: 10.1306/A25FECA7-171B-11D7-8645000102C1865D [13] Hao, F., Cai, D.S., Zou, H.Y., et al., 2004. Overpressure-tectonic activity controlled fluid flow and rapid petroleum accumulation in Bozhong depression, Bohai Bay basin. Earth Science—Journal of China University of Geosciences, 29(5): 518-524 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200405002.htm [14] Harding, T.P., Tuminas, A.C., 1988. Interpretation of footwall (lowside) fault traps sealed by reverse faults and convergent wrench faults. AAPG Bulletin, 72(6): 738-757. doi: 10.1306/44B4A271-170A-11D7-8645000102C1865D [15] Harding, T.P., Tuminas, A.C., 1989. Structural interpretation of hydrocarbon traps sealed by basement normal block faults at stable flank of foredeep basins and at rift basins. AAPG Bulletin, 73(7): 812-840. http://www.researchgate.net/publication/255060466_Structural_interpretation_of_hydrocarbon_traps_sealed_by_basement_normal_block_faults_at_stable_flank_of_foredeep_basins_and_at_rift_basins [16] Hu, S.Y., Yu, Y.J., Dong, D.Z., et al., 2006. Control of fault activity on hydrocarbon accumulation in Central Junggar basin. Acta Petrolei Sinica, 27(1): 1-7 (in Chinese with English abstract). doi: 10.1111/j.1745-7254.2006.00255.x [17] Hua, B.Q., 1995. Stress field, seismic pumping and oil-gas migration. Acta Sedimentologica Sinica, 13(2): 77-85 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB502.009.htm [18] Hou, P., Luo, X.R., Zhou, B., et al., 2005. An experimental study of episodic oil migration. Xinjiang Petroleum Geology, 26(1): 33-35 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSD200501009.htm [19] Jiang, Z.X., Pang, X.Q., Zeng, J.H., et al., 2005. Research on types of the dominant migration pathways and their physical simulation experiments. Earth Science Frontiers, 12(4): 507-516 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200504026.htm [20] Knipe, R.J., 1992. Faulting processes and fault seal. NPF, Special Publications 3, Elsevier, Amsterdam, 325-342. [21] Knipe, R.J., 1997. Juxtaposition and seal diagrams to help analyze fault seals in hydrocarbon reservoirs. AAPG Bulletin, 81(2): 187-195. doi: 10.1306/522B42DF-1727-11D7-8645000102C1865D [22] Li, Z.H., Tang, L.J., Ding, W.L., et al., 2002. Fault characteristic analysis for the hinterland of Junggar basin. Petroleum Exploration and Development, 29(1): 40-43 (in Chinese with English abstract). http://www.researchgate.net/publication/290349335_Fault_characteristic_analysis_for_the_hinterland_of_Junggar_basin [23] Liu, G.D., Wu, K.Y., Zha, M., 2002. Draining capacity of fault zone as a pathway of oil and gas leakage. Journal of China University of Petroleum (Edition of Natural Science), 26(1): 16-22 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDX200201004.htm [24] Lu, B., Ding, W.L., Liu, Z., et al., 1998. Anvances of research on fault sealing. Geological Science and Technology Information, 17(3): 75-80 (in Chinese with English abstract). [25] Ma, Z.J., Qu, G.S., Li, T., et al., 2008. Tectonic coupling and segmentation of marginal structural belt in Junggar basin. Xinjiang Petroleum Geology, 29(3): 271-277 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSD200803000.htm [26] Qiao, H.S., Niu, J.Y., Wang, M.M., 1999. The principle and exploration practice of hydrocarbon accumulation sealed by backward faults in deep formations of eastern China. Petroleum Exploration and Development, 26(6): 10-13 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK199906003.htm [27] Shang, E.J., Jin, Z.J., Ding, W.L., et al., 2005. Study on physical simulation experiment for the controlling of faults to oil—taking the Hongche faults in the northwest of Junggar basin as an example. Petroleum Geology and Experiment, 27(4): 414-418 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD200504017.htm [28] Smith, D.A., 1966. Theoretical consideration of sealing and non-sealing faults. AAPG Bulletin, 50(2): 363-374. [29] Smith, D.A., 1980. Sealing and non-sealing faults in Louisiana Gulf Coast salt basin. AAPG Bulletin, 64(2): 145-172. doi: 10.1306/2F918946-16CE-11D7-8645000102C1865D [30] Sun, Y.H., Fu, X.F., Lü, Y.F., et al., 2007. Suction role of seismic pumping and physical simulation on hydrocarbon migration and accumulation. Journal of Jilin University (Earth Science Edition), 37(1): 98-104, 111 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200701015.htm [31] Wang, Y.C., Wang, S.N., 2009. Controlling of the match of source rock, overpressure and fault on oil accumulation of Fuyang oil layer in Sanzhao depression. Journal of Jilin University (Earth Science Edition), 39(4): 656-661 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/cckjdxxb200904008 [32] Wang, Y.L., Zhang, Y.J., Wang, G.H., et al., 2002. Achievements and prospect for petroleum exploration and development in Junggar basin. Xinjiang Petroleum Geology, 23(6): 449-455 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-XJSD200206000.htm [33] Watts, N.L., 1987. Theoretical aspects of cap-rock and fault seal for single-and two-phase hydrocarbon columns. Marine and Petroleum Geology, 4(4): 274-307. doi: 10.1016/0264-8172(87)90008-0 [34] Watts, N.L., Kaars Sijpestein, C.H., Osai, L.N., et al., 1991. Dynamic leakage of faults during differential depletion: theory, models, and examples from the Niger Delta (abs. ). AAPG Bulletin, 75: 1424. doi: 10.1306/0C9B1D63-1710-11D7-8645000102C1865D [35] Weber, K.J., Mandl, G., Pilaar, W.F., et al., 1978. The role of faults in hydrocarbon migration and trapping in Nigerian growth fault structures. Tenth Annual offshore Technology Conference Proceedings, 4: 2643-2653. http://www.researchgate.net/publication/264739824_The_role_of_faults_in_hydrocarbon_migration_and_trapping_in_Nigerian_growth_fault_structures_2643-2651 [36] Wu, K.Y., Zha, M., Wang, X.L., et al., 2005. Fault controls on oil and gas in the Mosuowan area, Junggar basin. Journal of Geomechanics, 11(1): 60-66 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX200501008.htm [37] Yang, R.J., Xie, Z.W., Cheng, S.D., 2006. Physical simulation of the effect of faults on migration and accumulation of Kela 2 gas field. Journal of Daqing Petroeum Institute, 30(3): 11-13, 144 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQSY200603003.htm [38] Yielding, G., Freeman, B., Needham, D.T., 1997. Quantitative fault seal prediction. AAPG Bulletin, 81(6): 897-917. http://aapgbull.geoscienceworld.org/content/81/6/897 [39] Yu, C.L., Zeng, J.H., 2005. Features of fluid migration and hydrocarbon accumulation in the active and intermittent stages of fault episodic activities. Petroleum Geology and Experiment, 27(2): 129-133 (in Chinese with English abstract). http://www.researchgate.net/publication/298431761_Features_of_fluid_migration_and_hydrocarbon_accumulation_in_the_active_and_intermittent_stages_of_fault_episodic_activities [40] Zhang, Z.P., Wang, Y., Yun, J.B., et al., 2009. Control of faults at different evolution stages on hydrocarbon accumulation in Tazhong area, the Tarim basin. Oil and Gas Geology, 30(3): 316-323 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-SYYT200903010.htm [41] Zhao, W.Z., Hu, S.Y., Wang, Z.C., et al., 2003. Key role of basement fault control on oil accumulation of Yanchang Formation, Upper Triassic, Ordos basin. Petroleum Exploration and Development, 30(5): 1-5 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK200305000.htm [42] Zeng, J.H., Jin, Z.J., 2000. The physical simulation on secondary hydrocarbon migration and accumulation. Petroleum Industry Press, Beijing, 1-12 (in Chinese). [43] Zeng, J.H., Wang, H.Y., 1999. An experimental study of petroleum migration and accumulation in carrier bed and lithological trap. Earth Science—Journal of China University of Geosciences, 24(2): 193-196 (in Chinese with English abstract). http://www.researchgate.net/publication/288031228_An_experimental_study_of_petroleum_migration_and_accumulation_in_carrier_bed_and_lithological_trap [44] 陈发景, 田世澄, 1989. 压实与油气运移. 武汉: 中国地质大学出版社, 26-38. [45] 陈红汉, 李思田, 1996. 活动热流体与成藏、成矿动力学研究进展. 地学前缘, 3(3-4): 259-262. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY604.013.htm [46] 丁文龙, 金之钧, 张义杰, 等, 2002. 新疆准噶尔盆地断裂控油气作用机理研究. 地学前缘, 9(3): 102. doi: 10.3321/j.issn:1005-2321.2002.03.029 [47] 杜春国, 郝芳, 邹华耀, 等, 2007. 断裂输导体系研究现状及存在的问题. 地质科技情报, 26(1): 51-56. doi: 10.3969/j.issn.1000-7849.2007.01.009 [48] 高君, 吕延防, 田庆丰, 2009. 断裂带内部结构与油气运移及封闭. 大庆石油学院学报, 31(2): 4-7, 122. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY200702002.htm [49] 郝芳, 蔡东升, 邹华耀, 等, 2004. 渤中坳陷超压-构造活动联控型流体流动与油气快速成藏. 地球科学——中国地质大学学报, 29(5): 518-524. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200405002.htm [50] 华保钦, 1995. 构造应力场、地震泵和油气运移. 沉积学报, 13(2): 77-85. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB502.009.htm [51] 侯平, 罗晓容, 周波, 等, 2005. 石油幕式运移实验研究. 新疆石油地质, 26(1): 33-35. doi: 10.3969/j.issn.1001-3873.2005.01.009 [52] 胡素云, 蔚远江, 董大忠, 等, 2006. 准噶尔盆地腹部断裂活动对油气聚集的控制作用. 石油学报, 27(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200601000.htm [53] 姜振学, 庞雄奇, 曾溅辉, 等, 2005. 油气优势运移通道的类型及其物理模拟实验研究. 地学前缘, 12(4): 507-516. doi: 10.3321/j.issn:1005-2321.2005.04.020 [54] 李振宏, 汤良杰, 丁文龙, 等, 2002. 准噶尔盆地腹部地区断裂特征分析. 石油勘探与开发, 29(1): 40-43. doi: 10.3321/j.issn:1000-0747.2002.01.010 [55] 柳广弟, 吴孔友, 查明, 2002. 断裂带作为油气散失通道的输导能力. 石油大学学报(自然科学版), 26(1): 16-22. doi: 10.3321/j.issn:1000-5870.2002.01.006 [56] 鲁兵, 丁文龙, 刘忠, 等, 1998. 断层封闭性研究进展. 地质科技情报, 17(3): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ803.013.htm [57] 马宗晋, 曲国胜, 李涛, 等, 2008. 准噶尔盆地盆山构造耦合与分段性. 新疆石油地质, 29(3): 271-277. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200803000.htm [58] 谯汉生, 牛嘉玉, 王明明, 1999. 中国东部深部层系反向断层遮挡聚油原理与勘探实践. 石油勘探与开发, 26(6): 10-13. doi: 10.3321/j.issn:1000-0747.1999.06.003 [59] 尚尔杰, 金之钧, 丁文龙, 等, 2005. 断裂控油的物理模拟实验研究——以准噶尔盆地西北缘红车断裂带为例. 石油实验地质, 27(4): 414-418. doi: 10.3969/j.issn.1001-6112.2005.04.018 [60] 孙永河, 付晓飞, 吕延防, 等, 2007. 地震泵抽吸作用与油气运聚成藏物理模拟. 吉林大学学报(地球科学版), 37(1): 98-104, 111. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200701015.htm [61] 王雅春, 王胜男, 2009. 源岩、超压和断裂空间匹配对三肇凹陷扶杨油层油成藏的控制作用. 吉林大学学报(地球科学版), 39(4): 656-661. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200904008.htm [62] 王宜林, 张义杰, 王国辉, 等, 2002. 准噶尔盆地油气勘探开发成果及前景. 新疆石油地质, 23(6): 449-455. doi: 10.3969/j.issn.1001-3873.2002.06.002 [63] 吴孔友, 查明, 王绪龙, 等, 2005. 准噶尔盆地莫索湾地区断层控油作用. 地质力学学报, 11(1): 60-66. doi: 10.3969/j.issn.1006-6616.2005.01.008 [64] 杨荣军, 谢志巍, 成世东, 2006. 断裂在克拉2气田运聚成藏作用中的物理模拟. 大庆石油学院学报, 30(3): 11-13, 144. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY200603003.htm [65] 于翠玲, 曾溅辉, 2005. 断层幕式活动期和间歇期流体运移与油气成藏特征. 石油实验地质, 27(2): 129-133. doi: 10.3969/j.issn.1001-6112.2005.02.006 [66] 张仲培, 王毅, 云金表, 等, 2009. 塔中地区断裂不同演化阶段对油气聚集的控制. 石油与天然气地质, 30(3): 316-323. doi: 10.3321/j.issn:0253-9985.2009.03.010 [67] 赵文智, 胡素云, 王泽成, 等, 2003. 鄂尔多斯盆地基底断裂在上三叠统延长组石油聚集中的控制作用. 石油勘探与开发, 30(5): 1-5. doi: 10.3321/j.issn:1000-0747.2003.05.001 [68] 曾溅辉, 金之钧, 2000. 油气二次运移和聚集物理模拟. 北京: 石油工业出版社, 1-12. [69] 曾溅辉, 王洪玉, 1999. 输导层和岩性圈闭中石油运移和聚集模拟实验研究. 地球科学——中国地质大学学报, 24(2): 193-196. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX902.018.htm