Composition and Genesis of n-Alkanes and Their Hydrogen Isotope in Sediments from Saline Lake, China
-
摘要: 青海湖是我国最大的内陆咸水湖泊.对这种湖泊沉积物中正构烷烃及其氢同位素进行了分析, 研究了沉积物中正构烷烃及其同位素组成, 并且与青海湖水生植物及其周围陆生植物的研究结果进行了对比, 研究了它们的成因.结果显示了青海湖表层和柱状沉积物中正构烷烃分布都是类似的, 其特征反映了它们起源于湖泊周围陆生草本植物.青海湖表层沉积物中正构烷烃氢同位素组成特征也与柱状沉积物中的类似, 沉积物样品中正构烷烃氢同位素的组成和分布特征反映了它们主要来自陆生草本植物.从而进一步证实了水体中沉积物的正构烷烃氢同位素组成, 反映了生物源的氢同位素组成, 后者与古气候相关, 因此沉积物的正构烷烃氢同位素组成可以指示古气候.Abstract: The Qinghai Lake is the largest saline lake in China. We study the compositions of n-alkanes and their hydrogen isotope in sediments from the lake, and discuss the genesis of their compositions by the comparison with previous study results of plants from the lake and its surrounding areas. Our results show that the n-alkanes in the surface and core sediments have a similar distribution which reflects the source from terrestrial herbaceous plants in the surrounding regions of the lake. The hydrogen isotopic compositions of n-alkanes in the surface and core sediments are also similar, which indicates that n-alkanes in the sediments were derived from terrestrial herbaceous plants in surrounding regions of the lake. This study further demonstrates that the hydrogen isotopic compositions of n-alkanes in lake sediment reflect the biological source hydrogen isotopic signals that are related to paleoclimate. Therefore, δD values of n-alkanes in lake sediment can be used to indicate paleoclimate.
-
Key words:
- geochemistry /
- saline lake /
- sediment /
- distribution of n-alkane /
- hydrogen isotopic composition /
- genesis
-
表 1 青海湖沉积物中正构烷烃参数
Table 1. Parameters of n-alkanes in the studied samples
样号 沉积物 深度(cm) 相对湖泊位置 坐标 碳数范围 Cmax ACL CPI 表层沉积物 QM-1 黑色泥 表层 北部 37°11′ 15″N;100°04′38″E C16-C33 C27 27.9 4.5 QM-2 黑色泥 表层 西部 37°11′ 48″N;99°49′34″E C21-C31 C29 27.9 8.0 QM-6 灰色泥 表层 北部 37°08′ 18″N; 100°20′44″E C16-C31 C27 27.4 4.7 QM-9 灰色泥 表层 北部 37°11′15″N; 100°04′38″E C17-C33 C25 27.7 4.1 QM-13 灰色泥 表层 西部 36°54′06″N; 99°38 ′01″E C17-C33 C27 27.8 5.7 QM-15 黑色泥 表层 东部 36°32′52″N; 100°41′27″E C21-C31 C29 28.0 5.2 QM-17 灰色泥 表层 南部 36°39′14″N; 100°16′16″E C16-C31 C27 27.5 4.0 QM-20 黑色泥 表层 南部 36°37′ 59″N; 100°06′59″E C16-C31 C27 27.7 3.5 QH-2-3 黑色泥 表层 西部 36°54′06″N; 99°38 ′01″E C17-C31 C27 27.1 4.9 柱状沉积物 QZH-2-10 黑色泥 0~10 西部 37°11′48″N; 99°49′34″E C17-C33 C27 28.0 3.7 QZH-2-20 黑色泥 10~20 西部 37°11′48″N; 99°49′34″E C17-C31 C25 27.5 3.9 QZH-2-30 黑色泥 20~30 西部 37°11′48″N; 99°49′34″E C19-C31 C25 27.0 3.4 QZH-2-40 黑色泥 30~40 西部 37°11′48″N; 99°49′34″E C19-C33 C29 27.9 3.8 QZH-2-50 黑色泥 40~50 西部 37°11′48″N; 99°49′34″E C19-C33 C29 28.0 4.8 注:CPI= [(C25+C27+…+C33)/(C24+C26+…+C32)+(C25+C27+…+C33)/(C26+C28+…+C34)]/2;ACL=[25(nC25)+27(nC27)+29(nC29)+31(nC31)+33(nC33)]/(nC25+nC27+nC29+nC31+nC33). 表 2 青海湖及其周围植物中正构烷烃参数和氢同位素组成平均值
Table 2. Mean parameters of n-alkanes and their hydrogen isotopic values in plants from Qinghai Lake and its surrounding areas
植物类型 样品数 平均ACL 平均CPI 平均δD值(‰) 水生眼子菜、绿藻 7个 26.3 7.6 -130.2 水生海韭菜 3个 28.4 18.4 -162.9 陆生嵩草 3个 28.1 13.3 -138.1 陆生早熟禾 3个 27.9 4.3 -165.0 陆生豆黄花棘 1个 28.3 25.7 -164.5 陆生赖草 2个 28.6 18.7 -149.9 陆生树叶 4个 26.8 12.5 -121.7 表 3 青海湖沉积物中正构烷烃氢同位素组成(‰)
Table 3. Hydrogen isotopic values of n-alkanes in the studied samples
样号 相对湖泊位置 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31 平均值 表层沉积物 QM-1 北部 -194.1 -187.5 -179.2 -181.4 -172.9 -176.3 -165.4 -170.1 -158.0 -171.9 -174.4 -175.6 QM-2 西部 -191.4 -189.7 -171.7 -187.6 -185.1 QM-6 北部 -152.4 -169.4 -158.5 -170.6 -171.7 -167.0 -154.9 -164.5 -139.3 -155.9 -120.4 -161.4 -157.2 QM-9 北部 -120.5 -162.1 -160.5 -170.5 -151.6 -161.6 -146.0 -154.8 -131.3 -148.7 -155.2 -151.2 QM-13 西部 -117.5 -119.6 -163.7 -131.6 -169.2 -160.6 -143.6 -158.0 -133.0 -164.6 -155.3 -147.0 QM-15 东部 -118.9 -144.4 -153.8 -174.1 -149.3 -123.1 -148.6 -148.0 -145.0 QM-17 南部 -183.3 -174.5 -200.7 -184.1 -201.6 -210.5 -188.3 -185.4 -172.0 -135.3 -154.7 -181.0 QM-20 南部 -137.8 -167.4 -147.3 -166.9 -172.2 -163.0 -148.9 -159.1 -135.8 -162.1 -161.5 -156.5 QH-2-3 西部 -112.7 -119.3 -139.5 -124.4 -142.5 -129.4 -150.2 -143.8 -132.7 表层样平均值 -143.4 -150.3 -159.8 -157.3 -167.9 -165.7 -169.0 -154.9 -162.6 -138.3 -156.5 -146.2 -163.3 -159.0 柱状沉积物 QZH-2-10 西部 -143.8 -173.9 -163.1 -177.2 -187.1 -177.0 -150.8 -167.9 -149.8 -162.0 -133.4 -166.5 -162.7 QZH-2-20 西部 -157.2 -140.9 -179.9 -158.3 -166.6 -136.4 -155.2 -125.2 -150.3 -144.7 -151.5 QZH-2-30 西部 -138.3 -120.7 -164.8 -141.3 -158.9 -121.0 -151.9 -142.3 -142.4 QZH-2-40 西部 -136.6 -170.1 -158.6 -171.0 -172.6 -148.1 -163.7 -143.1 -161.2 -131.1 -163.2 -156.3 QZH-2-50 西部 -149.4 -130.2 -173.5 -148.9 -166.4 -157.7 -156.0 -158.4 -155.1 柱样平均值 -140.2 -157.8 -142.7 -173.3 -158.6 -168.3 -139.1 -159.3 -139.4 -154.4 -132.3 -158.2 -153.6 表层和柱样总平均值 -143.4 -147.0 -159.0 -151.2 -170.0 -162.8 -168.8 -149.2 -161.4 -138.6 -155.7 -139.2 -161.5 -157.1 -
[1] Baas, M., Pancost, R., Van Geel, B., et al., 2000. A comparative study of lipids in Sphagnum species. Organic Geochemistry, 31(6): 535-541. doi: 10.1016/S0146-6380(00)00037-1 [2] Bi, X.H., Sheng, G.Y., Liu, X.H., et al., 2005. Molecular and carbon and hydrogen isotopic composition of n-alkanes in plant leaf waxes. Organic Geochemistry, 36(10): 1405-1417. doi: 10.1016/j.orggeochem.2005.06.001 [3] Chikaraishi, Y., Naraoka, H., 2003. Compound-specific δD-δ13C analyses of n-alkanes extracted from terrestrial and aquatic plants. Phytochemistry, 63(3): 361-371. doi: 10.1016/S0031-9422(02)00749-5 [4] Chikaraishi, Y., Naraoka, H., 2005. δ13C and δD identification of sources of lipid biomarkers in sediments of Lake Haruna (Japan). Geochimica et Cosmochimica Acta, 69(13): 3285-3297. doi:10. 1016/j.gca.2005.02.023 [5] Chikaraishi, Y., Naraoka, H., 2006. Carbon and hydrogen isotope variation of plant biomarkers in a plant-soil system. Chemical Geology, 231(3): 190-202. doi: 10.1016/j.chemgeo.2006.01.026 [6] Chikaraishi, Y., Naraoka, H., 2007. δ13C and δD relationships among three n-alkyl compound classes (n-alkanoic acid, n-alkane and n-alkanol) of terrestrial higher plants. Organic Geochemistry, 38(2): 198-215. doi: 10.1016/j.orggeochem.2006.10.003 [7] Chikaraishi, Y., Naraoka, H., Poulson, S.R., 2004. Hydrogen and carbon isotopic fractionations of lipid biosynthesis among terrestrial (C3, C4 and CAM) and aquatic plants. Phytochemistry, 65(10): 1369-1381. doi: 10.1016/j.phytochem.2004.03.036 [8] Cranwell, P.A., Eglinton, G., Robinson, N., 1987. Lipids of aquatic organisms as potential contributors to lacustrine sediments Ⅱ. Organic Geochemistry, 11(6): 513-527. doi: 10.1016/0146-6380(87)90007-6 [9] Dawson, D., Grice, K., Wang, S.X., et al., 2004. Stable hydrogen isotopic composition of hydrocarbons in torbanites (Late Carboniferous to Late Permian) deposited under various climatic conditions. Organic Geochemistry, 35(2): 189-197. doi: 10.1006/j.orggeochem.2003.09.004 [10] Dodd, R.S., Poveda, M.M., 2003. Environmental gradients and population divergence contribute to variation in cuticular wax composition in Juniperus communis. Biochemical Systematics and Ecology, 31(11): 1257-1270. doi: 10.1016/S0305-1978(03)00031-0 [11] Duan, Y., 2009. Compositions of n-alkanes and their hydrogen isotopes in plants from Qinghai Lake and its surrounding areas in China. Organic Geochemistry (in press). [12] Duan, Y., Wu, B.X., 2009. Hydrogen isotopic compositions and their environmental significance for individual n-alkanes in typical plants from land in China. Chinese Science Bulletin, 54(3): 461-467. doi: 10.1007/s11434-008-0443-x [13] Eglinton, G., Hamilton, R.J., 1967. Leaf epicuticular waxes. Science, 156(3780): 1322-1335. doi: 10.1126/science.156.3780.1322 [14] Ficken, K.J., Li, B., Swain, D.L., et al., 2000. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Organic Geochemistry, 31(8): 745-749. doi: 10.1016/S0146-6380(00)00081-4 [15] Huang, Y.S., Shuman, B., Wang, Y., et al., 2002. Hydrogen isotope ratios of palmitic acid in lacustrine sediments record Late Quaternary climate variations. Geology, 30(12): 1103-1106. doi:10.1130/0091-7613(2002)030<1103:HIROPA>2.0.CO;2 [16] Huang, Y.S., Shuman, B., Wang, Y., et al., 2004. Hydrogen isotope ratios of individual lipids in lake sediments as novel tracers of climatic and environmental change: a surface sediment test. Journal of Paleolimnology, 31(3): 363-375. doi: 10.1023/B:JOPL.0000021855.80535.13 [17] Huang, Y.S., Shuman, B., Wang, Y., et al., 2006. Climatic and environmental controls on the variation of C3 and C4 plant abundances in Central Florida for the past 62 000 years. Palaeogeography Palaeoclimatology Palaeoecology, 237(2-4): 428-435. doi: 10.1016/j.palaeo.2005.12.014 [18] Li, C., Sessions, A.L., Kinnaman, F.S., et al., 2009. Hydrogen-isotopic variability in lipids from Santa Barbara basin sediments. Geochimica et Cosmochimica Acta, 73(16): 4803-4823. doi: 10.1016/j.gca.2009.05.056 [19] Li, M.W., Huang, Y.S., Obermajer, M., et al., 2001. Hydrogen isotopic compositions of individual alkanes as a new approach to petroleum correlation: case studies from the western Canada sedimentary basin. Organic Geochemistry, 32(2): 1387-1399. doi: 10.1016/S0146-6380(01)00116-4 [20] Meyers, P.A., 2003. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Organic Geochemistry, 34(2): 261-289. doi: 10.1016/S0146-6380(02)00168-7 [21] Mügler, I., Sachse, D., Werner, M., et al., 2008. Effect of lake evaporation on δD values of lacustrine n-alkanes: a comparison of Nam Co (Tibetan Plateau) and Holzmaar (Germany). Organic Geochemistry, 39(6): 711-729. doi: 10.1016/j.orggeochem.2008.02.008 [22] Sachse, D., Radke, J., Gleixner, G., 2004. Hydrogen isotope ratios of recent lacustrine sedimentary n-alkanes record modern climate variability. Geochimica et Cosmochimica Acta, 68(23): 4877-4889. doi: 10.1016/j.gca.2004.06.004 [23] Sachse, D., Radke, J., Gleixner, G., 2006. δD values of individual n-alkanes from terrestrial plants along a climatic gradient-implications for the sedimentary biomarker record. Organic Geochemistry, 37(4): 469-483. doi: 10.1016/j.orggeochem.2005.12.003 [24] Sauer, P.E., Eglinton, T.I., Hayes, J.M., et al., 2001. Compound-specific D/H ratios of lipid biomarkers from sediments as a proxy for environmental and climatic conditions. Geochimica et Cosmochimica Acta, 65(2): 213-222. doi: 10.1016/S0016-7037(00)00520-2 [25] Seki, O., Meyers, P.A., Kawamura, K., et al., 2009. Hydrogen isotopic ratios of plant wax n-alkanes in a peat bog deposited in Northeast China during the last 16 kyr. Organic Geochemistry, 40(6): 671-677. doi: 10.1016/j.orggeochem.2009.03.007 [26] Sessions, A.L., 2006. Seasonal changes in D/H fractionation accompanying lipid biosynthesis in Spatina alterniflora. Geochimica et Cosmochimica Acta, 70(9): 2153-2162. doi: 10.1016/j.gca.2006.02.003 [27] Sun, Y.L., Li, X.Y., Xu, H.Y., 2007. Daily precipitation and temperature variations in Qinghai Lake watershed in recent 40 years. Arid Meteorology, 25(1): 7-13 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSQX200701001.htm [28] Xie, S., Nott, C.J., Avsejs, L.A., et al., 2000. Palaeoclimate records in compound-specific δD values of a lipid biomarker in ombrotrophic peat. Organic Geochemistry, 31(10): 1053-1057. doi: 10.1016/S0146-6380(00)00116-9 [29] Xiong, Y.Q., Geng, A.S., Pan, C.C., et al., 2004. Hydrogen isotopic compositions of individual (n-alkanes) in terrestrial source rocks. Petroleum Exploration and Development, 31(1): 60-63 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK200401018.htm [30] Yang, H., Huang, Y.S., 2003. Preservation of lipid hydrogen isotope ratios in Miocene lacustrine sediments and plant fossils at Clarkia, northern Idaho, USA. Organic Geochemistry, 34(3): 413-423. doi: 10.1016/S0146-6380(02)00212-7 [31] 孙永亮, 李小雁, 许何也, 2007. 近40a青海湖流域逐日降水和气温变化特征. 干旱气象, 25(1): 7-13. doi: 10.3969/j.issn.1006-7639.2007.01.002 [32] 熊永强, 耿安松, 潘长春, 等, 2004. 陆相有机质中单体烃的氢同位素组成特征. 石油勘探与开发, 31(1): 60-63. doi: 10.3321/j.issn:1000-0747.2004.01.018