• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    利用采样定理与沉积速率确定旋回分析最佳采样间隔

    赵庆乐 吴怀春 李海燕 张世红

    赵庆乐, 吴怀春, 李海燕, 张世红, 2011. 利用采样定理与沉积速率确定旋回分析最佳采样间隔. 地球科学, 36(1): 12-16. doi: 10.3799/dqkx.2011.002
    引用本文: 赵庆乐, 吴怀春, 李海燕, 张世红, 2011. 利用采样定理与沉积速率确定旋回分析最佳采样间隔. 地球科学, 36(1): 12-16. doi: 10.3799/dqkx.2011.002
    ZHAO Qing-le, WU Huai-chun, LI Hai-yan, ZHANG Shi-hong, 2011. Determination of the Optimal Sampling Interval for Cyclostratigraphic Analysis by Using Sampling Theorem and Accumulation Rates. Earth Science, 36(1): 12-16. doi: 10.3799/dqkx.2011.002
    Citation: ZHAO Qing-le, WU Huai-chun, LI Hai-yan, ZHANG Shi-hong, 2011. Determination of the Optimal Sampling Interval for Cyclostratigraphic Analysis by Using Sampling Theorem and Accumulation Rates. Earth Science, 36(1): 12-16. doi: 10.3799/dqkx.2011.002

    利用采样定理与沉积速率确定旋回分析最佳采样间隔

    doi: 10.3799/dqkx.2011.002
    基金项目: 

    中石化前瞻性研究 G0800-06-ZS-319

    国家自然科学基金 40802012

    国家自然科学基金 40572019

    国家自然科学基金 40621002

    详细信息
      作者简介:

      赵庆乐(1979-), 男, 博士, 主要从事旋回地层学、岩石磁学相关研究.E-mail: kwala@163.com

    • 中图分类号: P539.3

    Determination of the Optimal Sampling Interval for Cyclostratigraphic Analysis by Using Sampling Theorem and Accumulation Rates

    • 摘要: 旋回地层学方法近年来被成功应用于年代确定及重大地质事件天文影响因素的判别.采样是旋回分析中最重要的一步, 目前大多使用地球物理、地球化学替代性指标, 采样频率过高, 会大大增加测量和计算的工作量, 同时也会增加随机干扰或其他非气候因素的干扰; 采样频率过低, 可能识别不出其中所包含的米兰柯维奇旋回成分.为确定一个最佳的采样间隔, 通过对80~100 Ma理论日照量曲线及两个实测剖面3种采样间隔(密集采样间隔与约等于一个岁差周期沉积厚度四分之一和一半的采样间隔)数据分别进行谱估计并比较谱估计结果.发现在满足采样定理的前提下, 以一个岁差周期沉积厚度的约一半作为采样间隔, 既可以分析出全部的米兰柯维奇旋回信号, 又具有最少的工作量, 是旋回分析的最佳采样间隔.实际采样中需根据平均沉积速率来确定这个最佳采样间隔.

       

    • 图  1  80~100 Ma日照量曲线频谱

      a.采样间隔=1 ka;b.采样间隔=11 ka

      Fig.  1.  Spectra of 80-100 Ma daily insolation curve

      图  2  M206井自然伽马测井曲线频谱

      虚线:采样间隔=0.125 m;点画线:采样间隔=0.5 m;实线:采样间隔=0.875 m

      Fig.  2.  Spectra of well M206 nature gamma-ray logging

      图  3  ODP208-1262岩心铁的XRF数据曲线频谱

      虚线:采样间隔=0.02 m;点画线:采样间隔=0.06 m;实线:采样间隔=0.1 m

      Fig.  3.  Spectra of iron XRF data of ODP leg 208 site 1262 core

      图  4  低密度采样数据与高密度采样数据滑动平均后(a)及高密度采样数据谱(b)分析结果比较

      虚线:高密度采样数据能量谱;点画线:高密度采样数据滑动平均后数据能量谱;实线:低密度采样数据能量谱

      Fig.  4.  Comparison of spectra results for low densely sampled data, moving average of high densely sampling data (a) and high densely sampling data (b)

    • [1] Heard, T.G., Pickering, K.T., Robinson, S.A., 2008. Milankovitch forcing of bioturbation intensity in deep-marine thin-bedded siliciclastic turbidites. Earth and Planetary Science Letters, 272(1-2): 130-138. doi: 10.1016/j.epsl.2008.04.025
      [2] Hinnov, L.A., Ogg, J.G., 2007. Cyclostratigraphy and the astronomical time scale. Stratigraphy, 4: 239-251. http://www.researchgate.net/publication/248529016_Cyclostratigraphy_and_the_astronomical_time_scale_Stratigraphy
      [3] Laskar, J., Robutel, P., Joutel, F., et al., 2004. A long-term numerical solution for the insolation quantities of the Earth. Astronomy & Astrophysics, 428(1): 261-285.10.1051/0004-6361: 20041335 http://www.researchgate.net/publication/41713454_A_Long-term_Numerical_Solution_for_the_Insolation_Quantities_of_the_Earth
      [4] Lathi, B.P., 1998. Signal processing and linear systems. Berkeley Cambridge Press, Carmichael.
      [5] Li, Y.X., Bralower, T.J., Montañez, I.P., et al., 2008. Toward an orbital chronology for the early Aptian Oceanic Anoxic Event (OAE1a, ~120 Ma). Earth and Planetary Science Letters, 271(1-4): 88-100. doi: 10.1016/j.epsl.2008.03.055
      [6] Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20: PA1003. doi: 10.1029/2004PA001071
      [7] Locklair, R.E., Sageman, B.B., 2008. Cyclostratigraphy of the Upper Cretaceous Niobrara Formation, western Interior, U.S.A. : a Coniacian-Santonian orbital timescale. Earth and Planetary Science Letters, 269(3-4): 540-553. doi: 10.1016/j.epsl.2008.03.021
      [8] Lourens, L.J., Sluijs, A., Kroon, D., et al., 2005. Astronomical pacing of Late Palaeocene to Early Eocene global warming events. Nature, 435: 1083-1087. doi: 10.1038/nature03814
      [9] Machlus, M.L., Olsen, P.E., Christie-Blick, N., et al., 2008. Spectral analysis of the Lower Eocene Wilkins Peak Member, Green River Formation, Wyoming: support for Milankovitch cyclicity. Earth and Planetary Science Letters, 268(1-2): 64-75. doi: 10.1016/j.epsl.2007.12.024
      [10] Weedon, G.P., 2003. Time-series analysis and cyclostratigraphy: examining stratigraphic records of environmental cycles. Cambridge University Press, Cambridge.
      [11] Westerhold, T., Rohl, U., Laskar, J., et al., 2007. On the duration of magnetochrons C24r and C25n and the timing of Early Eocene global warming events: implications from the Ocean Drilling Program Leg 208 Walvis Ridge depth transect. Paleoceanography, 22: PA2201. doi: 10.1029/2006PA001322
      [12] Wu, H.C., Zhang, S.H., Jiang, G.Q., et al., 2009. The floating astronomical time scale for the terrestrial Late Cretaceous Qingshankou Formation from the Songliao basin of Northeast China and its stratigraphic and paleoclimate implications. Earth and Planetary Science Letters, 278(3-4): 308-323. doi: 10.1016/j.epsl.2008.12.016
    • 加载中
    图(4)
    计量
    • 文章访问数:  3085
    • HTML全文浏览量:  157
    • PDF下载量:  86
    • 被引次数: 0
    出版历程
    • 收稿日期:  2010-09-20
    • 刊出日期:  2011-01-01

    目录

      /

      返回文章
      返回