Resource Estimation of Co-Rich Crusts of Seamounts in the Pacific
-
摘要: 为合理地估算出太平洋海山钴结壳资源量, 基于我国西太平洋海山钴结壳拖网采样调查资料以及对太平洋海山钴结壳资源分布规律和钴结壳矿区圈定参数指标的深入研究, 创造性地按海山不同高度、不同洋壳年龄赋予不同结壳厚度, 进而首次计算出太平洋海山干结壳资源量为(507.06~1 014.11)×108 t, 锰为(111.15~222.29)×108 t, 钴为(3.04~6.08)×108 t, 镍为(2.23~4.46)×108 t, 铜为(0.66~1.32)×108 t, 结壳分布面积为2 062 862 km2.通过Co通量与结壳Co沉积量、结壳厚度的相关分析表明, 赋予不同洋壳年龄段的结壳厚度是理论厚度的6.10%~12.20%, 这与Ku et al.得出"结壳生长时间只占其整个生命史4%"的认识非常相近, 说明所赋结壳厚度基本合理, 得出的结壳资源量基本正确.为整个大洋海盆内海山钴结壳资源量的估算提供了新方法.Abstract: Marine Co-rich crusts are important as potential mineral resources for Co, Ni, Cu, Mn, and other metals, as well as for the paleoenvironment signals stored in their stratigraphic layers. The higher Co, Ni and Pt contents of crusts relative to pelagic polymetallic nodules and hydrothermal deposits have made seamount crusts a potential target for commercial exploitation. In order to obtain the amount of Co-rich crust resources on seamounts in the Pacific, based on the surveying data of Co-rich crust resources on seamounts in the western Pacific by means of dredge hauling, a series of detailed research on the distribution of Co-rich crust resources and parameter index for delineation of Co-rich crust resources on seamounts in the Pacific, each seamount is endowed with the crust thickness according to its height and age of ocean crust and consequent amount of dry crust resources is at first calculated to be (507.06-1 014.11)×108 t, (111.15-222.29)×108 t manganese, (3.04-6.08)×108 t cobalt, (2.23-4.46)×108 t nickel, (0.66-1.32)×108 t copper, and distributed area of crusts on seamounts in Pacific is 2 062 862 km2. By means of analyzing relationships between Co-fluxes with amount of Co-deposited in the crust and crust thickness, the endowed crust thickness accounts for 6.10%-12.20% of the theoretical deductive thickness, which is close to Ku's conclusion of "the crusts were actually growing for 4% of their lifetime". It is shows that the endowed number of crust thickness is reasonable and the obtained resource amount is reliable. This paper provides a new method for estimating the amount of Co-rich crust resources on seamounts in a whole deep-sea basin.
-
Key words:
- Pacific seamount /
- Co-rich crust /
- resources amount /
- marine geology /
- mineral resources
-
图 1 太平洋海山分布示意(据Muller et al., 1997修改)
颜色表示洋壳年龄;黑点表示海山;数据来自http://www.mantleplumes.org
Fig. 1. Sketch of seamount distribution in the Pacific
图 3 钴结壳Co含量与水深关系(研究区指西太平洋,太平洋资料来自http://www.ngdc.noaa.gov)
Fig. 3. Relationship between Co contents of cobalt crusts and the water depth
图 4 钴结壳厚度与年龄关系(数据见表 4)
Fig. 4. Relationship between crust thickness and age
图 5 西太平洋洋壳年龄、海山年龄与经度关系(数据来自Clouard and Bonneville, 2001; Wessel, 2001)
Fig. 5. Relationship between ocean crust (seamount) age and longitude
表 1 钴结壳厚度与洋壳(海山)沉降深度关系
Table 1. Relationship between cobalt crust thickness and depressed depth of the ocean crust (seamount)
洋壳(海山)沉降深度(m) 结壳生长间隔深度(m) 结壳生长年龄(Ma) 结壳生长速率(mm/Ma) 结壳厚度(mm) 500~1 000 500 2.04 1.1 2.24 500~1 500 1 000 8.16 1.1 8.98 500~2 000 1 500 18.36 1.1 20.20 500~2 500 2 000 32.65 1.1 35.92 500~3 000 2 500 51.02 1.1 56.12 500~3 500 3 000 73.46 1.1 80.81 500~4 000 3 500 100.00 1.1 110.00 表 2 太平洋海山钴结壳资源量计算(按海山高度)
Table 2. Estimation of cobalt crust resource amount on the seamount in the Pacific (based on seamount height)
海山高度(m) 海山个数 洋壳平均年龄(Ma) 最小经度 最大经度 平均经度 最小纬度 最大纬度 平均纬度 0~2 000 3 333 74.50 131.42 256.25 198.29 -64.92 58.70 -0.97 2 000~3 000 3 334 89.04 131.52 256.98 192.98 -63.62 58.77 1.77 3 000~4 000 924 112.55 131.28 252.48 186.50 -63.56 56.24 4.89 4 000~5 000 281 111.46 140.98 252.87 186.17 -61.36 55.10 7.43 5 000~6 000 75 111.18 140.22 248.88 187.56 -63.49 50.85 6.09 6 000~8 000 75 107.63 147.02 244.42 190.07 -48.19 56.47 6.36 海山高度(m) 海山平均高度(m) 海山平均半径(km) 海山面积(km2) 结壳平均厚度(cm) 结壳平均丰度(kg/m2) 结壳资源量(108 t) 结壳资源量*(108 t) 0~2 000 1 831 10.13 1 243 043.37 1.00 18.00 223.75 447.50 2 000~3 000 2 415 13.59 2 756 136.45 1.50 27.00 744.16 1 488.31 3 000~4 000 3 477 18.07 1 881 715.03 2.00 36.00 677.42 1 354.83 4 000~5 000 4 409 19.98 786 981.60 2.50 45.00 354.14 708.28 5 000~6 000 5 528 18.12 131 235.13 3.00 54.00 70.87 141.73 6 000~8 000 6 941 16.75 77 096.82 3.50 63.00 48.57 97.14 平均/累计 2 436 12.96 6 876 208.00 1.71 30.78 2 118.90 4 237.80 注:*钴结壳资源量按2倍丰度计算. 表 3 太平洋海山钴结壳资源量计算(按洋壳年龄)
Table 3. Estimation of cobalt crust resource amount on the seamount in the Pacific (based on ocean crust age)
洋壳年龄(Ma) 海山个数 洋壳平均年龄(Ma) 最小经度 最大经度 平均经度 最小纬度 最大纬度 平均纬度 0~30 1 355 13.83 136.08 256.98 236.94 -64.92 56.24 -6.19 30~60 864 42.62 133.00 236.42 203.22 -62.99 58.19 -4.17 60~90 695 77.11 167.92 222.78 206.00 -58.69 50.68 -11.63 90~120 1 527 107.38 148.35 215.25 195.69 -50.86 46.70 10.40 120~150 922 132.97 143.75 193.08 175.26 -6.18 43.79 15.75 150~180 968 161.88 145.88 176.75 159.83 0.12 31.38 13.89 无年龄 1 691 87.22 131.28 250.55 178.77 -63.62 58.77 -8.02 洋壳年龄(Ma) 海山平均高度(m) 海山平均半径(km) 海山面积(km2) 结壳平均厚度(cm) 结壳平均丰度(kg/m2) 结壳资源量(108 t) 结壳资源量*(108 t) 0~30 2 203 10.48 560 671 0.50 9.00 50.46 100.92 30~60 2 258 11.43 429 638 1.00 18.00 77.33 154.67 60~90 2 400 13.25 544 225 1.50 27.00 146.94 293.88 90~120 2 538 15.65 1 681 634 2.00 36.00 605.39 1 210.78 120~150 2 576 14.75 853 284 2.50 45.00 383.98 767.96 150~180 2 843 19.48 1 576 789 3.00 54.00 851.47 1 702.93 无年龄 2 327 13.13 1 229 966 2.08 37.44 460.50 921.00 平均/累计 2 436 13.94 6 876 208 2.08 37.44 2 576.07 5 152.13 注:*钴结壳资源量按2倍丰度计算. 表 4 世界大洋钴结壳厚度分布(拖网采样)
Table 4. Distribution of cobalt crust thickness on seamounts in the world-wide oceans (dredge haul samples)
样品 位置 纬度 经度 水深(m) 厚度(cm) 年龄(Ma) 生长速率(mm/Ma) 文献 OSM3 麦哲伦 10°50′N 157°40′E 1 772~1 950 19.0 Kim et al., 2005, 2006 OSM4 麦哲伦 12°50′N 157°50′E 1 555~2 015 11.5 Kim et al., 2005, 2006 OSM5 马绍尔 15°20′N 158°45′E 1 421~1 564 14.0 Kim et al., 2005, 2006 OSM6 马绍尔 15°40′N 160°05′E 1 385~1 631 13.0 Kim et al., 2005, 2006 KK84-RD50 Schumann海山 25°42′N 159°48′W 2 250~2 600 9.5 78.5 1.10 McMurtry et al., 1994 CLD01 威克 21°45′00″N 160°44′24″E 2 210 8.0 81.8 0.98 Ling et al., 2005; Pan et al., 2002 CB12 中太平洋 17°59′52″N 178°39′36″E 2 381 7.0 78.1 0.90 Ling et al., 2005; Pan et al., 2002 CJ01 中太平洋 17°59′18″N 177°42′34″W 3 082 8.0 77.7 1.03 Ling et al., 2005; Pan et al., 2002 CD29-2 太平洋 16°42′N 168°14′W 2 390~1 970 10.5 55.0 2.10 Ling et al., 2005; Pan et al., 2002 D11-1 太平洋 11°39′N 161°41′E 1 870~1 690 14.7 58.0 2.53 Ling et al., 2005; Pan et al., 2002 BM1969.05 大西洋 39°00′N 60°57′W 1 800 13.0 80.0 1.62 Frank et al., 1999 ALV539 大西洋 35°00′N 59°00′W 2 700 8.0 41.0 2.37 Frank et al., 1999 SS663 印度洋 12°57′S 76°06′E 5 250 6.7 26.0 2.80 Frank et al., 1999 109D-C 印度洋 27°58′S 60°48′E 5 434 3.0 24.0 1.60 Frank et al., 1999 89-D09 马绍尔群岛 11°45.10′N 161°33.60′W 2 530 5.4 14.0 2.00 Jeong et al., 2000 89-D11 马绍尔群岛 11°37′N 161°40′W 1 870 10.4 47.0 3.00 Jeong et al., 2000 90-D01 马绍尔群岛 10°27.29′N 156°41.80′W 2 180 8.5 33.0 3.00 Jeong et al., 2000 91-D16 帕老群岛 8°33.49′N 135°36.79′W 3 400 1.5 8.0 2.00 Jeong et al., 2000 表 5 Co通量与钴结壳Co沉积量和厚度的相关分析
Table 5. Relationship between Co flux and Co deposited amount and thickness of cobalt crust
海山洋壳年龄(Ma) Co通量(kg/m2) 赋予结壳厚度(cm) 丰度(kg/m2) Co沉积量(kg/m2) Co沉积量占Co通量百分数(Co沉积量/Co通量)×100 理论推测厚度(cm) 1 0.0295 0.016 653 0.029 5 100.00 0.273 30 0.885 0.5 9 0.054 6.10 8.2 60 1.770 1.0 18 0.108 6.10 16.3 90 2.655 1.5 27 0.162 6.10 24.5 120 3.540 2.0 36 0.216 6.10 33.0 150 4.425 2.5 45 0.270 6.10 41.0 180 5.310 3.0 54 0.324 6.10 49.0 表 6 太平洋海山钴结壳资源量
Table 6. Amount of cobalt crust resource on the seamount in the Pacific
金属元素 结壳金属元素含量(%) 结壳金属量(108t) 太平洋CC区结核金属量*(108 t) 陆地资源量*(108 t) 美国年需求量*(103 t) 锰(Mn) 21.92 111.15~222.29 7.06~26.00 20.00 580 钴(Co) 0.60 3.04~6.08 0.064~0.24 0.085 5.2 镍(Ni) 0.44 2.23~4.46 0.35~1.31 0.540 132 铜(Cu) 0.13 0.66~1.32 0.29~1.08 4.600 1 490 太平洋海山面积 6 876 208 km2 结壳分布面积 2 062 862 km2 干结壳资源量 (507.05~1014.11)×108 t 注: *Manheim, 1986.Marine Cobalt Resources.Science, 232:600~608. -
[1] Clouard, V., Bonneville, A., 2001. Ages of seamounts, islands and plateaus on the Pacific plate (version 2.0). http://www.mantleplumes.org,http://www.upf.pf/geos. [2] Craig, C.H., Sandwell, D.T., 1988. Global distribution of seamounts from seasat profiles. J. Geophys. Res. , 93(B9): 10408-10420. doi: 10.1029/JB093iB09p10408 [3] Craig, J.D., Andrews, J.E., Meylan, M.A., 1982. Ferromanganese deposits of the Hawaiian archipelago. Marine Geology, 45(1-2): 127-157. doi: 10.1016/0025-3227(82)90183-9 [4] Cronan, D.S., 1977. Deep-sea nodules: distribution and geochemistry. In: Glasby, G.P., ed., Marine Manganese deposits. Elsevier, Amsterdam, 11-44. [5] Glasby, G.P., 1972. The mineralogy of manganese nodules from a range of marine environments. Marine Geology, 13(1): 57-72. doi: 10.1016/0025-3227(72)90071-0 [6] Flood, P.G., 2001. The 'Darwin Point' of Pacific Ocean atolls and guyots: a reappraisal. Palaeogeography, Palaeoclimatology, Palaeoecology, 175(1-4): 147-152. doi: 10.1016/S0031-0182(01)00390-X [7] Frank, M., O'Nions, R.K., Hein, J.R., et al., 1999.60 Myr records of major elements and Pb-Nd isotopes from hydrogenous ferromanganese crusts: reconstruction of seawater paleochemistry. Geochimica et Cosmochimica Acta, 63(11-12), 1689-1708. [8] Halbach, P., Manheim, F.T., Otten, P., 1982. Co-rich ferromanganese deposits in the marginal seamount regions of the Central Pacific basin-results of the Midpac '81. Erzmetall, 35(9): 447-453. [9] Halbach, P., Puteanus, D., 1984. The influence of the carbonate dissolution rate on the growth and composition of Co-rich ferromanganese crusts from Central Pacific seamount areas. Earth and Planetary Science Letters, 68(1): 73-87. doi: 10.1016/0012-821X(84)90141-9 [10] Halbach, P., Segl, M., Puteanus, D., et al., 1983. Co-fluxes and growth rates in ferromanganese deposits from Central Pacific seamount areas. Nature, 304(25): 716-719. doi: 10.1038/304716a0 [11] He, G.W., Liang, D.H., Song, C.B., et al., 2005. Determining the distribution boundary of cobalt-rich crusts of guyot by synchronous application of sub-bottom profiling and deep-sea video recording. Earth Science-Journal of China University of Geosciences, 30(4): 509-512 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200504019.htm [12] Heezen, B.C., Matthews, J.L., Catalano, R., et al., 1973. Western Pacific guyots. Initial Reports, DSDP, 20: 653-723. [13] Hein, J.R., Kirschenbaum, H., Schwab, W.C., et al., 1990. Mineralogy and geochemistry of Co-rich ferromanganese crusts and substrate rocks from Karin Ridge and Johnston Island, Farnella Cruise F7-86-HW. Geological Survey Open File Report, U.S.A., 90-298. [14] Hein, J.R., Morgan, C. L., 1999. Influence of substrate rocks on Fe-Mn crust composition. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 46(5): 855-875. doi: 10.1016/S0967-0637(98)00097-1 [15] Hein, J.R., Schwab, W.C., Davis, A., 1988. Cobalt-and platinum-rich ferromanganese crusts and associated substrate rocks from the Marshall Islands. Marine Geology, 78(3-4): 255-283. doi: 10.1016/0025-3227(88)90113-2 [16] Hugh, C.J., Paul, A.W., 1999. Stratigraphy, Paleoceanography, and evolution of cretaceous Pacific guyots: relics from a greenhouse earth. American Journal of Science, 299: 341-392. doi: 10.2475/ajs.299.5.341 [17] Jeong, K.S., Jung, H.S., Kang, J.K., et al., 2000. Formation of ferromanganese crusts on northwest intertropical Pacific seamounts: electron photomicrography and microprobe chemistry. Marine Geology, 162, 541-559. doi: 10.1016/S0025-3227(99)00091-2 [18] Kim, J., Hyeong, K., Jung, H.S., et al., 2006. Southward shift of the intertropical convergence zone in the western Pacific during the Late Tertiary: evidence from ferromanganese crusts on seamounts west of the Marshall Islands. Paleoceanography, 21(PA4218): 14. doi: 10.1029/2006PA001291 [19] Kim, J., Hyeong, K., Yoo, C.M., et al., 2005. Textural and geochemical characteristics of Fe-Mn crusts from four seamounts near the Marshall Islands, western Pacific. Geosciences Journal, 9(4): 331-338. doi: 10.1007/BF02910321 [20] Koppers, A.A.P., Morgan, J.P., Morgan, J.W., et al., 2001. Testing the fixed hotspot hypothesis using 40Ar/39Ar age progressions along seamount trails. Earth and Planetary Science Letters, 185(3-4): 237-252. doi: 10.1016/S0012-821X(00)00387-3 [21] Koppers, A.A.P., Staudigel, H., 2005. Asynchronous bends in Pacific Seamount trails: a case for extensional volcanism? Science, 307(5711): 904-907. doi: 10.1126/science.1107260 [22] Koschinsky, A., Halbach, P., 1995. Sequential leaching of marine ferromanganese precipitates: genetic implications. Geochimica et Cosmochimica Acta, 59(24): 5113-5132. doi: 10.1016/0016-7037(95)00358-4 [23] Koschinsky, A., Stascheit, A., Bau, M., et al., 1997. Effects of phosphatization on the geochemical and mineralogical composition of marine ferromanganese crusts. Geochimica et Cosmochimica Acta, 61(19): 4079-4094. doi: 10.1016/S0016-7037(97)00231-7 [24] Ku, T.L., Kusakabe, M., Nelson, D.E., et al., 1982. Constancy of oceanic deposition of 10Be as recorded in manganese crusts. Nature, 299: 240-242. doi: 10.1038/299240a0 [25] Ling, H.F., Jiang, S.Y., Martin, F., et al., 2005. Differing controls over the Cenozoic Pb and Nd isotope evolution of deepwater in the Central North Pacific Ocean. Earth and Planetary Science Letters, 232(3-4): 345-361. doi: 10.1016/j.epsl.2004.12.009 [26] Manheim, F.T., 1986. Marine cobalt resources. Science, 232(4750): 600-608. doi: 10.1126/science.232.4750.600 [27] Martin, J.H., Knauer, G.A., 1985. Lateral transport of Mn in the North-East Pacific Gyre oxygen minimum. Nature, 314: 524-526. doi: 10.1038/314524a0 [28] Мамвеенков, B.B., Седов, А. П., 1996. Периодичностьвнутриплитного вулканизма Тихого океана. ΟКЕАНОЛОГИЯ, 36(4): 606-611. [29] McMurtry, G.M., VonderHaar, D.L., Eisenhauer, A., et al., 1994. Cenozoic accumulation history of a Pacific ferromanganese crust. Earth and Planetary Science Letters, 125(1-4): 105-118. doi: 10.1016/0012-821X(94)90209-7 [30] Menard, H.W., 1964. Marine geology of the Pacific. McGraw-Hill, New York. [31] Morgan, W.J., 1972. Deep mantle convection plumes and plate motions. Am. Assoc. Petrol. Geol. Bull. , 56: 203-213. doi: 10.1306/819A3E50-16C5-11D7-8645000102C1865D [32] Morgan, W.J., 1981. Hotspots tracks and the opening of the Atlantic and Indian oceans. In: Emiliani, C., ed., The oceanic lithosphere. Wiley, New York, 443-487. [33] Muller, R.D., Roest, W.R., Royer, J.Y., et al., 1997. Digital isochrones of the world's ocean floor. Journal of Geophysical Research, 102(B2): 3211-3214. doi: 10.1029/96JB01781 [34] Pan, J.H., Liu, S.Q., Eric, D., 2002. The Effects of marine phospharization on element concentration of cobalt-rich crusts. Acta Geoscientia Sinica, 23(5): 403-408. [35] Richey, J.L., 1987. Assessment of cobalt-rich manganese crust resources on Horizon and S.P. Lee Guyots, U.S. EEZ. Marine Mining, 6: 231-243. http://www.researchgate.net/publication/291493874_Assessment_of_cobalt-rich_manganese_crust_resources_on_Horizon_and_SP_Lee_Guyots_US_exclusive_economic_zone [36] Sclater, J.G., Anderson, R.N., Bell, M.L., 1971. Elevation of ridges and evolution of the central eastern Pacific. Journal of Geophysical Research, 76(32): 7888-7915. doi: 10.1029/JB076i032p07888 [37] Segl, M., Mangini, A., Beer, J., et al., 1989. Growth rate variations of manganese nodules and crusts induced by paleoceanographic events. Paleoceanography, 4(5): 511-530. doi: 10.1029/PA004i005p00511 [38] Segl, M., Mangini, A., Bonani, G., et al., 1984. 10Be-dating of a manganese crust from Central North Pacific and implications for ocean palaeocirculation. Nature, 309: 540-543. doi: 10.1038/309540a0 [39] Smith, D.K., Jordan, T.H., 1988. Seamount statistics in the Pacific Ocean. J. Geophys. Res. , 93(B4): 2899-2918. doi: 10.1029/JB093iB04p02899 [40] Smith, W.H.F., Sandwell, D., 1997. Global sea floor topography from satellite altimetry and sparse shipboard bathymetry. Science, 277: 1956-1961. doi: 10.1126/science.277.5334.1956 [41] Smoot, N.C., 1999. Orthogonal intersections of megatrends in the western Pacific Ocean basin: a case study of the MPM. Geomorphology, 30(4): 323-356. doi: 10.1016/S0169-555X(99)00060-4 [42] Wessel, P., 1997. Sizes and ages of seamounts using remote sensing: implications for intraplate vocanism. Science, 277: 802-805. doi: 10.1126/science.277.5327.802 [43] Wessel, P., 2001. Global distribution of seamounts inferred from grided Geosat/ERS-1 altimetry. J. Geophys. Res. , 106(B9): 19431-19441. doi: 10.1029/2000JB000083 [44] Wessel, P., Kroenke, L., 1997. A geometric technique for relocating hotspots and refining absolute plate motions. Nature, 387: 365-369. doi: 10.1038/387365a0 [45] Wessel, P., Lyons, S., 1997. Distribution of large Pacific seamounts from Geosat/ERS-1: implications for the history of intraplate volcanism. J. Geophys. Res. , 102(B10): 22459-22475. doi: 10.1029/97JB01588 [46] Winterer, E.L., Metzler, C.V., 1984. Origin and subsidence of Guyots in Mid-Pacific Mountains. Journal of Geophysical Research, 89(B12): 9969-9979. doi: 10.1029/JB089iB12p09969 [47] Xu, M.Z., 1999. Submarine mineral resources. Ocean University of Qingdao Press, Qingdao (in Chinese). [48] Yubko, V.M., Melnikov, M.E., Kazmin, Y.B., et al., 2004. Regional and local variability in the spatial distribution of cobalt-bearing ferromanganese crusts in the world's ocean. In: The International Seabed Authority, ed., Minerals other than polymetallic nodules of the International Seabed area. National Library of Jamaica Cataloguing-in-Publication Data, Jamaica, 62-174. [49] Zhang, F.Y., 2001. Evaluation principle and delineation method of polymetallic nodule resources. China Ocean Press, Beijing (in Chinese). [50] Zhang, F.Y., Zhang, W.Y., Zhu, K.C., et al., 2008. Parameter and index for delineation and evaluation of co-rich crust resources. Earth Science-Journal of China University of Geosciences, 33(2): 251-258 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.033 [51] Zhang, F.Y., Zhang, W.Y., Zhu, K.C., et al., 2008. Distribution characteristics of cobalt-rich ferromanganese crust resources on submarine seamounts in the western Pacific. Acta Geologica Sinica, 82(4): 796-803. [52] Zhang, H.S., Zhao, P.D., Chen, S.Y., et al., 2001. Mineralizing characteristics of cobalt-rich ferromanganese nodule and crust in Central Pacific Ocean seamount. Earth Science-Journal of China University of Geosciences, 26(2): 205-209 (in Chinese with English abstract). [53] Zhang, W.Y., Zhang, F.Y., Yang, K.H., et al., 2007. Fractal characteristics of resources quantity of cobalt crusts and seamount topography, the West Pacific. Front. Earth Sci. China, 1(2): 233-240. doi: 10.1007/s11707-007-0029-y [54] Zhu, E.Q., 1991. An introduction to marine geology. Ocean University of Qingdao Press, Qingdao, 87-93 (in Chinese). [55] 何高文, 梁东红, 宋成兵, 等, 2005. 浅地层剖面测量和海底摄像联合应用确定平顶海山富钴结壳分布界线. 地球科学——中国地质大学学报, 30(4): 509-512. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200504019.htm [56] 徐脉直, 1999. 海洋固体矿产. 青岛: 青岛海洋大学出版社. [57] 张富元, 2001. 大洋多金属结核资源评价原理和矿区圈定方法. 北京: 海洋出版社. [58] 张富元, 章伟艳, 朱克超, 等, 2008. 钴结壳矿区圈定和资源评价的参数指标. 地球科学——中国地质大学学报, 33(2): 251-258. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200802014.htm [59] 张海生, 赵鹏大, 陈守余, 等, 2001. 中太平洋海山多金属结壳的成矿特征. 地球科学——中国地质大学学报, 26(2): 205-209. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200102022.htm [60] 朱而勤, 1991. 近代海洋地质学. 青岛: 青岛海洋大学出版社, 87-93.