Genesis of Zhaxikang Pb-Zn-Sb-Ag Deposit in Northern Himalaya: Constraints from Multi-Isotope Geochemistry
-
摘要: 扎西康矿床是北喜马拉雅金锑多金属成矿带中发现的唯一一个大型Pb-Zn-Sb-Ag共生矿床.矿体赋存于SN向的高角度张扭性断裂带中, 该矿床的黄铁矿、闪锌矿、方铅矿、硫锑铅矿和辉锑矿等硫化物的δ34S值为4.5‰~12.0‰, 多数集中在8‰~11‰, 富集重硫且变化较小, 表明其硫源是一致的, 主要来源于围岩中的海相地层还原硫.206Pb/204Pb、207Pb/204Pb、208Pb/204Pb比值分别在18.474~19.637, 15.649~15.774和39.660~40.010范围内, 并成一条直线, 具有放射性异常铅的特征, 投图落在上地壳铅演化线附近.流体包裹体的δDV-SMOW为-127‰~-135‰, δ18OH2O为-13.7‰~12.4‰, 偏向于西藏地热水的分布范围; He-Ar同位素组成表明成矿流体主要为地壳流体和饱和大气水的混合, 没有明显的地幔流体成分混入.其多元同位素组成与北喜马拉雅成矿带的金或金锑等其他矿床具有明显的差异, 表明其成矿作用具有特殊性, 在中新世随着印度与欧亚板块后碰撞挤压向伸展走滑阶段转换, 在北喜马拉雅构造带内形成一系列的SN向高角度断裂, 并促使地壳发生部分熔融形成熔融层, 引起局部热流值剧增, 地温异常梯度增大, 驱动地下水对流循环, 萃取晚三叠世-早侏罗世的一套浊流或喷流灰黑色碳硅泥岩系地层中的成矿物质, 沿着SN向断裂带充填交代成矿, 属于沉积-构造-热泉水改造的多阶段充填交代热液脉状矿床.Abstract: Zhaxikang deposit is the only large Pb-Zn-Sb-Ag symbiotic deposit in the northern Himalayas gold-antimony polymetallic belt, with its ore body located in the high-angle twisting fault zone striking SN direction. The δ34S of pyrite, sphalerite, galena, jamesonite, stibnite ranges from 4.5‰ to 12.0‰, with the majority ranging from 8‰ to 11‰, and it is enriched in sulfur with a narrow range, indicating that the same sulfur source, mainly from the rock formation in the marine sulfur reduction. The ratio of 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb is at 18.474-19.637, 15.649-15.774 and 39.660-40.010 respectively, falling near the upper crust of lead evolution line within the investment plan, and into a straight line. δDV-SMOW values of water in fluid inclusions of quartz varies from -127‰ to -135‰, δ18OH2O to -13.7‰ to 12.4‰, in the distribution of geothermal water in Tibet. He-Ar isotopes shows that the ore-forming fluid was mainly derived from rustal fluids and saturated meteoric water, and apparently there is no mixing mantle fluid composition. The multi-isotope composition of the deposit has significant difference with gold or gold-antimony deposit in North Himalayan metallogenic belt, which indicates its unique mineralization of Zhaxikang deposits. As the Indian plate colliding to Eurasian plate in Miocene post-collisional transition environment from intra-continental orogeny to extension slip in North Himalayan belt, there formed a series of high-angle fault zones of SN direction, causing partial melting of crust which increased local heat flux sharply and geothermal gradient anomalies driving groundwater convection cycle, extracting metallogenic elements from Late Triassic-Early Cretaceous turbidite or black carbon and silicon gray mudstone strata The deposit formed by replacement and filling along the SN fault zone, which belongs to sedimentary-structural-geothermal water multi-stage replacement and hydrothermal vein deposits.
-
图 3 扎西康铅锌锑银矿床铅构造模式图解(底图据Zartman and Doe, 1981)
▲.扎西康铅锌锑银矿;◇.马扎拉锑金矿(郑有业, 2001, 内部报告);△.沙拉岗锑矿(李金高,2000);○.浪卡子金矿(郑明华, 1999, 内部报告);□.藏北美多锑矿(余金杰,2001);A.上地幔;B.造山带;C.上地壳;D.下地壳
Fig. 3. Pb Isotopic composition of Zhaxikang Pb-Zn-Sb-Ag deposit
图 4 扎西康铅锌锑银矿床铅同位素Δγ-Δβ图解(底图据朱炳泉,1998)
▲.扎西康铅锌锑银矿;◇.马扎拉锑金矿(郑有业, 2001, 内部报告);△.沙拉岗锑矿(李金高,2000);○.浪卡子金矿(郑明华, 1999, 内部报告);□.藏北美多锑矿(余金杰,2001);1.上地幔源铅;2.上地壳源铅;3.地壳与地幔混合的俯冲带铅(3a.岩浆作用,3b.沉积作用);4.化学沉积型铅;5.海底热水作用铅;6.中深变质作用铅;7.深变质下地壳铅;8.造山带铅;9.古老页岩山地壳铅;10.退变质铅
Fig. 4. Δγ-Δβ map of Pb isotope of Zhaxikang Pb-Zn-Sb-Ag deposit
图 5 扎西康矿床(a)和北喜马拉雅成矿带矿床(b)硫同位素组成频率直方图
(a)A.黄铁矿;B.闪锌矿;C.方铅矿;D.硫锑铅矿;E.辉锑矿;(b)A.马扎拉(戚学祥等,2008;杨竹森等,2006);B.哲古(郑有业等,待发;杨竹森等,2006);C.扎西康铅锌锑银矿(本文;杨竹森等,2006; Yang et al., 2009);D.沙拉岗锑矿(戚学祥等,2008;杨竹森等,2006;余金杰,2001;李金高,2000);E.查拉普金矿(郑有业等,待刊);F.车穷卓布锑矿;G.雪拉;H.下巴;I.拉琼(戚学祥等,2008);J.藏北美多锑矿(余金杰,2001)
Fig. 5. S isotope frequency histogram of Zhaxikang deposit (a) and other deposits in North Himalayan (b)
图 6 扎西康矿床及北喜马拉雅成矿带矿床δDV-SMOW-δ18OH2O同位素组成
▲.扎西康铅锌锑银矿;△.查拉普金矿(郑有业等,另文待发);○.浪卡子金矿(郑明华, 1999, 内部报告);●.车穷卓布锑矿(孟祥金等,2008);◇.西藏地热水(郑淑蕙等,1982);■.马扎拉锑金矿;□.哲古金锑矿;◆.沙拉岗锑矿(马扎拉锑金矿、哲古金锑矿、沙拉岗锑矿(据杨竹森等,2006和Yang et al., 2009)
Fig. 6. δDV-SMOW-δ18OH2O isotope composition of Zhaxikang deposit and other deposits in North Himalayan
图 7 扎西康铅锌锑银矿床流体包裹体40Ar/36Ar-R/Ra图解(参照王旭东等,2009)
Fig. 7. 40Ar/36Ar-R/Ra isotope of fluid inclusion of Zhaxikang deposit
表 1 扎西康铅锌锑银矿床铅同位素组成
Table 1. Pb isotope composition of Zhaxikang Pb-Zn-Sb-Ag deposit
样号 矿物 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb ϕ μ ω 232Th/238U △β △γ ZXKPD7-6 闪锌矿 19.637±0.005 15.774±0.003 40.010±0.007 0.530 9.70 37.78 3.77 28.72 67.77 ZXKPD7-8 闪锌矿 19.528±0.007 15.730±0.003 39.957±0.015 0.532 9.63 37.72 3.79 25.85 66.35 ZXKPD7-7 方铅矿 19.586±0.003 15.739±0.004 39.883±0.012 0.530 9.64 37.25 3.74 26.43 64.38 ZXKPD6-5 方铅矿 19.578±0.005 15.730±0.004 39.859±0.014 0.529 9.62 37.12 3.73 25.85 63.74 ZXKPD6-19 闪锌矿 19.568±0.009 15.729±0.006 39.858±0.015 0.530 9.62 37.16 3.74 25.78 63.71 ZXKPD6-11 硫锑铅矿 19.474±0.007 15.649±0.008 39.660±0.016 0.527 9.48 36.17 3.69 20.56 58.43 ZXKPD5-1 辉锑矿 19.617±0.003 15.728±0.002 39.919±0.003 0.527 9.62 37.13 3.74 25.72 65.34 ZXKPD5-6 辉锑矿 19.542±0.005 15.683±0.005 39.783±0.012 0.527 9.54 36.59 3.71 22.78 61.71 注:ϕ=(235U/204Pb);ω=(232Th/204Pb);μ=(238U/204Pb);Δβ=(207Pb/204Pb)d(t)/(207Pb/204Pb)m(t)-1×1 000;Δγ=(208Pb/204Pb)d(t)/(208Pb/204Pb)m(t)-1×1 000;d(t)为样品测试值;m(t)为地幔值. 表 2 扎西康铅锌锑银矿床硫、氢、氧同位素组成
Table 2. S-H-O isotope composition of ore minerals of Zhaxikang Pb-Zn-Sb-Ag deposit
编号 阶段 矿石类型 矿物
δ34SCDT
(‰)来源 样号 矿石类型 矿物 δDV-SMOW
(‰)δ18OV-SMOW
(‰)均一温
度(℃)δ18OH2O
(‰)来源 ZXKPD7-8d Ⅰ 角砾状菱铁矿-闪锌矿矿石 黄铁矿 11.78 本文 ZXK-PD7-8a 角砾状菱铁矿闪锌矿矿石 菱铁矿 -127 本文 ZXKPD7-8 Ⅰ 角砾状菱铁矿-闪锌矿矿石 闪锌矿 10.83 本文 ZXK-PD7-17a 角砾状菱铁矿闪锌矿矿石 菱铁矿 -135 本文 ZXKPD6-12b Ⅰ 块状黄铁矿-闪锌矿矿石 黄铁矿 11.97 本文 ZXK-PD6-1a 含矿石英脉 石英 -155 21.4 265 12.4 本文 ZXKPD6-12a Ⅰ 块状黄铁矿-闪锌矿矿石 闪锌矿 11.23 本文 ZXK-PD6-2a 含矿石英脉 石英 -165 20.1 258 10.8 本文 ZXKPD6-11 Ⅳ 纤维状硫锑铅矿矿石 硫锑铅矿 8.79 本文 ZXK-PD7-2a 石英脉 石英 -160 15.0 253 5.5 本文 ZXKPD7-7 Ⅳ 块状中细粒方铅矿矿石 方铅矿 7.96 本文 ZXK-PD5-6a 放射状石英-辉锑矿石 石英 -152 1.9 244 -8.0 本文 ZXKPD6-5 Ⅳ 块状方铅矿矿石 方铅矿 7.71 本文 ZXK-PD5-8a 放射状石英-辉锑矿石 石英 -162 2.8 250 -6.8 本文 ZXKPD5-1 Ⅳ 放射状辉锑矿矿石 辉锑矿 5.24 本文 LZ-13 块状硅质岩(顶部) 石英 -156 12.3 200 -0.1 孟祥金等,2008 ZXKPD5-6 Ⅳ 块状放射状辉锑矿矿石 辉锑矿 5.34 本文 ZXK1-13 块状硅质岩 石英 -155 3.0 200 -9.4 孟祥金等,2008 ZXK-25 粗粒闪锌矿脉(早) 闪锌矿 12.0 杨竹森等,2006 ZXK1-10 细条带状硅质岩 石英 -149 4.0 200 -8.4 孟祥金等,2008 ZXK-26 粗粒闪锌矿脉(早) 闪锌矿 11.4 杨竹森等,2006 ZXK1-8 含空(晶)洞层状硅质岩 石英 -156 5.0 200 -7.4 孟祥金等,2008 ZXK-26 粗粒闪锌矿脉(早) 黄铁矿 11.2 杨竹森等,2006 ZXK1-7 块状纹层状硅质岩 石英 -138 2.9 200 -9.5 孟祥金等,2008 ZXK2-3 粗粒闪锌矿脉(早) 闪锌矿 11.2 杨竹森等,2006 ZXK2-2 细纹层条带状硅质岩 石英 -149 3.6 200 -8.8 孟祥金等,2008 ZXK2-3 粗粒闪锌矿脉(早) 方铅矿 9.9 杨竹森等,2006 LZ-04 紊乱层状块状硅质岩(底部) 石英 -154 9.8 200 -2.6 孟祥金等,2008 ZXK-6 石英-毒砂脉含闪锌矿角砾 闪锌矿 11.1 杨竹森等,2006 ZXK06-2 大脉状辉锑矿化硅质岩 石英 -142 -1.3 200 -13.7 孟祥金等,2008 ZXK-15 石英-黄铁矿脉 黄铁矿 8.9 杨竹森等,2006 ZXK-2 石英-辉锑矿-闪锌矿脉 石英 -140 1.3 184 -11.5 杨竹森等,2006 ZXK-23 石英-黄铁矿脉 黄铁矿 8.7 杨竹森等,2006 ZXK-3 石英-辉锑矿-闪锌矿脉 石英 -152 12.2 201 -0.2 杨竹森等,2006 ZXK-21 黄铁矿脉 黄铁矿 10.6 杨竹森等,2006 ZXK-5 石英-辉锑矿-闪锌矿脉 石英 12.6 200 0.2 Yang et al., 2009 ZXK1-1 石英-辉锑矿-闪锌矿脉 闪锌矿 10.2 杨竹森等,2006 ZXK-7 石英-辉锑矿脉 石英 -160 9.8 200 -2.6 Yang et al., 2009 ZXK1-3 石英-辉锑矿-闪锌矿脉 闪锌矿 10.6 Yang et al., 2009 ZXK-1 石英-辉锑矿-闪锌矿脉 石英 5.8 200 -6.6 Yang et al., 2009 ZXK1-4 石英-辉锑矿-闪锌矿脉 闪锌矿 10.4 Yang et al., 2009 ZXK-04-1 石英-辉锑矿脉 石英 -152 2.1 200 -10.3 Yang et al., 2009 ZXK1-5 石英-辉锑矿-闪锌矿脉 闪锌矿 10.4 Yang et al., 2009 ZXK-04-2 石英-辉锑矿脉 石英 -144 2.6 200 -9.8 Yang et al., 2009 ZXK1-9 石英-辉锑矿-闪锌矿脉 闪锌矿 9.7 Yang et al., 2009 ZXK-04-3 石英脉 石英 -154 4 200 -8.4 Yang et al., 2009 ZXK-5 石英-辉锑矿-闪锌矿脉 闪锌矿 9.1 Yang et al., 2009 ZXK-06-23 石英-黄铁矿脉 石英 11.9 200 -0.5 Yang et al., 2009 ZXK-3 石英-辉锑矿-闪锌矿脉 辉锑矿 7.1 Yang et al., 2009 07Q1-96 方铅矿 -140 戚学祥等,2008 ZXK04-2 石英-辉锑矿脉 辉锑矿 4.5 Yang et al., 2009 07Q1-97 闪锌矿 -131 戚学祥等,2008 表 3 扎西康矿床流体包裹体He-Ar同位素分析
Table 3. He-Ar isotope composition of fluid inclusion of Zhaxikang deposit
编号 矿物 质量(g) 4He(10-7) (cm3STP/g) 40Ar(10-7) (cm3STP/g) 3He/4He (Ra) 38Ar/36Ar 40Ar/36Ar ZXKPD7-8e 闪锌矿 0.292 39.0±2.60 2.46±0.17 0.045±0.007 0.156±0.069 10 047±549.6 ZXKPD7-8f 菱铁矿 0.293 55.8±3.70 15.0±1.0 0.079±0.010 0.221±0.019 463.5±12.1 ZXKPD6-1c 石英 0.393 1.49±0.10 29.7±2.0 0.172±0.006 0.174±0.053 1 463.6±37.6 ZXKPD6-2c 石英 0.392 1.89±0.13 27.7±1.9 0.169±0.013 0.248±0.029 1 483.4±38.1 ZXKPD5-6d 辉锑矿 0.293 15.2±1.0 3.49±0.24 0.041±0.003 - - ZXKPD5-6e 石英 0.389 0.20±0.02 32.6±2.2 0.048±0.007 0.194±0.019 831.5±51.1 ZXKPD5-8c 石英 0.390 0.09±0.01 18.0±1.2 1.305±0.023 0.183±0.004 959.2±21.1 -
[1] Beaumont, C., Jamieson, R.A., Nguyen, M.H., et al., 2001. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature, 414: 738-742. doi: 10.1038/414738a [2] Beaumont, C., Jamieson, R.A., Nguyen, M.H., et al., 2004. Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogen. J. Geophys. Res., 109, B06406. doi: 10:1029/2003JB002809 [3] Blisniuk, P.M., Hacker, B.R., Glodny, J., et al., 2001. Normal faulting in Central Tibet since at least 13.5 Myr ago. Nature, 412: 628-632. doi: 10.1038/35088045 [4] Brown, L.D., Zhao, W.J., Nelson, K.D., et al., 1996. Bright spots, structure, and magmatism in southern Tibet from INDEPTH seismic reflection profiling. Science, 274: 1688-1690. doi: 10.1126/science.274.5293.1688 [5] Chen, Y.J., Chen, H.Y., Liu, Y.L., et al., 1999. Progress and records in the study of endogenetic mineralization during collisional orogenesis. Chinese Science Bulletin, 45(1): 1-10. doi: 10.1007/BF02884893 [6] Chen, Y.J., Guo, G.J., Li, X., 1998. Metallogenic geodynamic background of Mesozoic gold deposits in granite-greenstone terrains of North China craton. Science in China (Series D), 41(2): 113-120. doi: 10.1007/BF02932429 [7] Coleman, M., Hodges, K., 1995. Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimum age for east-west extension. Nature, 374: 49-52. doi: 10.1038/374049a0 [8] Fu, W., Zhou, Y.Z., Yang, Z.J., et al., 2005. Characteristics of multi-horizon ore-bearing formations in southern Tibet Au-Sb metallogenic belt and its controlling factors. Geotectonica et Metallogenia, 29(3): 321-327 (in Chinese with English abstract). [9] Hoke, L., Lamb, S., Hilton, D., et al., 2000. Southern limit of mantle-derived geothermal helium emissions in Tibet: implications for lithoshperic structure. Earth Planet. Sci. Lett., 180(3-4): 297-308. doi: 10.1016/S0012-821X(00)00174-6 [10] Hou, Z.Q., Li, Z.Q., 2004. Possible location for underthrusting front of the Indus continent: constraints from helium isotope of the geothermal gas in southern Tibet and eastern Tibet. Acta Geologica Sinica, 78(4): 482-493 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dizhixb200404007 [11] Hou, Z.Q., Qu, X.M., Yang, Z.S., et al., 2006. Tibetan collisional OI'ogenic belt: Ⅲ. Mineralization in post-collisional extension setting. Mineral Deposits, 25(6): 629-651 (in Chinese with English abstract). [12] Li, J.G., 2000. Study on Mesozoic compound Sedex type of antimony and copper deposits of continental margin in central and southern of Tibet (Dissertation). Chengdu Institute of Technology, Chengdu (in Chinese with English abstract). [13] Li, Z.Q., Hou, Z.Q., Nie, F.J., et al., 2005. Characteristic and distribution of the partial melting layers in the upper crust: evidence from active hydrothermal fluid in the South Tibet. Acta Geologica Sinica, 79(1): 68-77 (in Chinese with English abstract). [14] Meng, X.J., Yang, Z.S., Qi, X.X., et al., 2008. Silicon-oxygen-hydrogen isotopic compositions of Zaxikang antimony polymetallic deposit in southern Tibet and its responses to the ore-controlling structure. Acta Petrologica Sinica, 24(7): 1649-1655 (in Chinese with English abstract). [15] Murphy, M.A., Harrison, T.M., 1999. Relationship between leucogranities and the Qomolangma detachment in the Rongbuk valley, South Tibet. Geology, 27: 831-834. doi: 10.1130/0091-7613(1999)027<0831:RBLATQ>2.3.CO;2 [16] Nelson, K.D., Zhao, W.J., Brown, L.D., et al., 1996. Parially molten middle crust beneath southern Tibet: synthesis of Project INDEPTH results. Science, 274(5293): 1684-1688. doi: 10.1126/science.274.5293.1684 [17] Qi, X.X., Li, T.F., Meng, X.J., et al., 2008. Cenozoic tectonic evolution of the Tethyan Himalayan foreland fault-fold belt in southern Tibet and is constraint on antimony-gold polymetallic minerogenesis. Acta Petrologica Sinica, 24(7): 1638-1648 (in Chinese with English abstract). [18] Schärer, U., Xu, R.H., Allègre, C.J., 1986. U-(Th)-Pb systematics and ages of Himalayan leucogranites, South Tibet. Earth Planet. Sci. Lett., 77(1): 35-48. doi: 10.1016/0012-821X(86)90130-5 [19] Searle, M.P., Godin, L., 2003. The South Tibetan detachment and the Manaslu leucogranite: a structural reinterpretation and restoration of the Annapurna-Manaslu Himalaya, Nepal. Journal of Geology, 111: 505-523. doi: 10.1086/376763 [20] Shen, F., Royden, L.H., Burchfiel, B.C., 2001. Large-scale crustal deformation of the Tibetan plateau. J. Geophy. Res., 106: 6793-6816. doi: 10.1029/2000JB900389 [21] Shen, X.J., Zhang, W.R., Yang, S.Z., et al., 1990. Heat flow and heat evolvement of terrain tectonic in Qinghai-Xizang plateau. Geological Publishing House, Beijing, 1-90 (in Chinese). [22] Wang, X.D., Ni, P., Jiang, S.Y., et al., 2009. Origin of ore-forming fluid in the Piaotang tungsten deposit in Jiangxi Province: evidence from helium and argon isotopes. Chinese Science Bulletin, 54(21): 3338-3344 (in Chinese). doi: 10.1360/csb2009-54-21-3338 [23] Williams, H., Turner, S., Kelley, S., et al., 2001. Age and composition of dikes in southern Tibet: new constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology, 29(4): 339-342. doi:10.1130/0091-7613(2001)029<0339:AACODI>2.0.CO;2 [24] Yang, Z.S., Hou, Z.Q., Gao, W., et al., 2006. Metallogenic characteristics and genetic model of antimony and gold deposits in South Tibetan detachment system. Acta Geologica Sinica, 80(9): 1377-1391 (in Chinese with English abstract). [25] Yang, Z.S., Hou, Z.Q., Meng, X.J., et al., 2009. Post-collisional Sb and Au mineralization related to the South Tibetan detachment system, Himalayan orogen. Ore Geology Reviews, 36(1-3): 194-212. doi: 10.1016/j.oregeorev.2009.03.005 [26] Ye, X.R., Wu, M.B., Sun, M.L., 2001. Determination of the noble gas isotopic composition in rocks and minerals by mass spectrometry. Rock and Mineral Analysis, 20(3): 174-178 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKCS200103002.htm [27] Yin, A., 2001. The geological evolution of the Himalayan-Tibetan orogen—the growth of Asian continent during the Phanerozoic. Acta Geoscientia Sinica, 22(3): 193-230 (in Chinese with English abstract). [28] Yin, A., Kapp, P.A., Murphy, M.A., et al., 1999. Evidence for significant Late Cenozoic E-W extension in North Tibet. Geology, 27: 787-790. doi: 10.1130/0091-7613(1999)027<0787:SLNEWE>2.3.CO;2 [29] Yu, J.J., 2001. Mineralization of antimony metallogenic zone in northern Tibet and a simple comparison of antimony metallogenic zones in northern Tibet and southern Tibet (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract). [30] Zartman, R.E., Doe, B.R., 1981. Plumbotectonics—the model. Tectonophysics, 75(1-2): 135-162. doi: 10.1016/0040-1951(81)90213-4 [31] Zhang, J.J., Guo, L., 2007. Structure and geochronology of the southern Xainza-Dinggye rift and its relationship to the South Tibetan detachment system. Journal of Asian Earth Sciences, 29(5-6): 722-736. doi: 10.1016/j.jseaes.2006.05.003 [32] Zhao, W.J., Nelson, K.D., Project INDEPTH Team, 1996. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet. Nature, 366: 557-559. [33] Zheng, S.H., Zhang, Z.F., Ni, B.L., et al., 1982. Hydrogen and oxygen isotopic studies of thermal waters in Xizang. Acta Scientiarum Naturalium Universitatis Pekinensis, (1): 99-106 (in Chinese with English abstract). http://www.cabdirect.org/abstracts/19812608807.html [34] Zheng, Y.Y., Duo, J., Ma, G.T., et al., 2007. Mineralization characteristics, discovery and age restriction of Chalapu Hardrock gold deposit, southern Tibet. Earth Science—Journal of China University of Geosciences, 32(2): 185-193 (in Chinese with English abstract). [35] Zheng, Y.Y., Zhao, Y.X., Wang, P., et al., 2004. The research of metallogenic regularity and the great progress of ore finding in metallogenic belt in southern Tibet, China. Earth Science—Journal of China University of Geosciences, 29(1): 44, 68 (in Chinese with English abstract). [36] Zhu, B.Q., 1998. Theory and application of isotopic system in the earth science. Science Press, Beijing, 224-226 (in Chinese with English abstract). [37] 陈衍景, 陈华勇, 刘玉琳, 等, 1999. 碰撞造山过程内生矿床成矿作用的研究历史和进展. 科学通报, 44(16): 1681-1689. doi: 10.3321/j.issn:0023-074X.1999.16.001 [38] 陈衍景, 郭光军, 李欣, 1998. 华北克拉通花岗绿岩地体中中生代金矿床的成矿地球动力学背景. 中国科学(D辑), 28(1): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199801006.htm [39] 付伟, 周永章, 杨志军, 等, 2005. 藏南多层位金锑含矿建造特征及其控矿因素制约. 大地构造与成矿学, 29(3): 321-327. doi: 10.3969/j.issn.1001-1552.2005.03.005 [40] 侯增谦, 李振清, 2004. 印度大陆俯冲前缘的可能位置: 来自藏南和藏东活动热泉气体He同位素约束. 地质学报, 78(4): 482-493. doi: 10.3321/j.issn:0001-5717.2004.04.007 [41] 侯增谦, 曲晓明, 杨竹森, 等, 2006. 青藏高原碰撞造山带: Ⅲ. 后碰撞伸展成矿作用. 矿床地质, 25(6): 629-651. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200604000.htm [42] 李金高, 2000. 西藏中南部中生代大陆边缘复合式Sedex型锑、铜矿床研究(博士论文). 成都: 成都理工学院. [43] 李振清, 侯增谦, 聂凤军, 等, 2005. 藏南上地壳低速高导层的性质与分布: 来自热水流体活动的证据. 地质学报, 79(1): 68-77. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200501007.htm [44] 孟祥金, 杨竹森, 戚学祥, 等, 2008. 藏南扎西康锑多金属矿硅-氧-氢同位素组成及其对成矿构造控制的响应. 岩石学报, 24(7): 1649-1655. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200807022.htm [45] 戚学祥, 李天福, 孟祥金, 等, 2008. 藏南特提斯喜马拉雅前陆断褶带新生代构造演化与锑金多金属成矿作用. 岩石学报, 24(7): 1638-1648. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200807021.htm [46] 沈显杰, 张文仁, 杨淑贞, 等, 1990. 青藏热流与地体构造热演化. 北京: 地质出版社, 1-90. [47] 王旭东, 倪培, 蒋少涌, 等, 2009. 江西漂塘钨矿成矿流体来源的He和Ar同位素证据. 科学通报, 54(21): 3338-3344. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200921022.htm [48] 杨竹森, 侯增谦, 高伟, 等, 2006. 藏南拆离系锑金成矿特征与成因模式. 地质学报, 80(9): 1377-1391. doi: 10.3321/j.issn:0001-5717.2006.09.013 [49] 叶先仁, 吴茂炳, 孙明良, 2001. 岩矿样品中稀有气体同位素组成的质谱分析. 岩矿测试, 20(3): 174-178. doi: 10.3969/j.issn.0254-5357.2001.03.003 [50] 尹安, 2001. 喜马拉雅-青藏高原造山带地质演化——显生宙亚洲大陆生长. 地球学报, 22(3): 193-230. doi: 10.3321/j.issn:1006-3021.2001.03.001 [51] 余金杰, 2001. 藏北锑矿带矿床地质特征及与藏南锑矿带粗略对比(博士论文). 北京: 中国地质科学院. [52] 郑淑蕙, 张知非, 倪葆龄, 等, 1982. 西藏地热水的氢氧稳定同位素研究. 北京大学学报, (1): 99-106. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ198201010.htm [53] 郑有业, 多吉, 马国桃, 等, 2007. 藏南查拉普岩金矿床特征、发现及时代约束. 地球科学——中国地质大学学报, 32(2): 185-193. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200702004.htm [54] 郑有业, 赵永鑫, 王苹, 等, 2004. 藏南金锑成矿带成矿规律研究及找矿取得重大进展. 地球科学——中国地质大学学报, 29(1): 44, 68. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200401007.htm [55] 朱炳泉, 1998. 地球科学中同位素体系理论与应用. 北京: 科学出版社, 224-226. doi: 10.3969/j.issn.1001-5965.1998.02.026