Geochemistry and Tectonic Setting of Lavas from Shijihe Area in Western North Qilian Mountains
-
摘要: 石鸡河一带是近年新发现的北祁连山多金属成矿带, 气侯和自然条件恶劣, 研究程度很低.该区地层岩性为阳起石岩、角岩和细碧岩; 岩石地球化学和Nd同位素数据显示岩石来源于亏损地幔, 具有N-MORB洋脊玄武岩特征; Sr同位素特征显示地层Sr同位素组成的改变是蚀变引起, 而不是由地壳物质加入引起的.Sm-Nd等时线年龄为481±20 Ma.提出了石鸡河地区地层形成于早奥陶世, 成岩环境为北祁连洋扩张环境, 而非区域资料上显示的残留海盆封闭、大陆碰撞造山环境.
-
关键词:
- 石鸡河 /
- 岩石地球化学 /
- Rb-Sr同位素 /
- Sm-Nd等时线年龄 /
- N-MORB洋脊玄武岩
Abstract: Recent studies showed that the Shijihe area is an important polymetallic metallogenic belt in western part of North Qilian Mountains in China. However, geological study degree is very low due to its remoteness and poor conditions. The Lavas of Shijihe area consists of actinolitite hornstone and spilite. The geochemical characteristics of metamorphic basic lava with flat REE distribution patterns, the contents of HFSE similar to N-MORB and εNd(0)=+9.03~+9.42 (except the sample 08p1) manifest that the rocks belong to the tholeiitic basalt series. Sr isotope characteristics indicate that Sr isotopic composition of the rocks was altered because of the metamorphism of the rock instead of the interfused crust. Sm-Nd isochron age is 481±20 Ma. The metamorphic basic lavas of Shijihe area is residue of Early Ordovician. The diagenesis environment is oceanic ridge instead of continental collision with closing of ocean basin.-
Key words:
- Shijihe /
- geochemistry /
- Rb-Sr isotope /
- Sm-Nd isochron age /
- N-MORB ocean ridge basalt
-
表 1 石鸡河地区火山岩主量元素(%)、微量元素(μg/g)含量分析结果
Table 1. Geochemical composition of the metamorphic basic lava in the Shijihe area
项目 08p1 08p2 08p3 08p4 08p5 08p6 08p7 08p8 08p9 N-MORB E-MORB OIB SiO2 50.44 49.17 43.85 50.69 51.01 50.66 49.53 49.68 46.71 TiO2 1.74 1.72 0.84 1.69 1.05 1.73 2.35 1.83 1.28 Al2O3 13.16 15.84 15.99 17.25 17.19 13.71 17.18 13.82 13.76 TFe2O3 14.67 13.94 11.13 14.82 13.94 12.25 17.54 13.19 12.34 MnO 0.17 0.24 0.23 0.22 0.27 0.23 0.12 0.21 0.17 MgO 3.82 5.64 5.41 3.25 3.77 7.31 1.38 6.92 5.66 CaO 4.25 7.38 17.15 7.17 6.94 8.99 3.03 9.14 15.24 Na2O 1.51 4.15 1.04 2.75 3.9 3.36 5 3.42 2.5 K2O 2.66 0.34 0.67 1.05 0.69 0.6 3.13 0.71 0.22 P2O5 0.19 0.17 0.11 0.16 0.16 0.16 0.22 0.17 0.12 LOI 7.84 1.62 3.26 0.87 1.06 1.22 0.69 1.15 1.76 La 42.1 3.14 2.46 4.51 8.28 3.17 4.97 3.38 2.15 2.5 6.3 37 Ce 87.4 9.87 5.71 9.09 17.2 10.7 13.2 11.5 7.26 7.5 15 80 Pr 9.26 1.93 1.42 2.03 2.62 2.06 2.67 2.18 1.52 1.32 2.05 9.7 Nd 36.2 10.5 7.25 11 12.3 11.3 14.8 12.1 8.09 7.3 9 38.5 Sm 6.97 3.76 2.52 3.88 3.43 3.98 5.26 4.3 3.07 2.63 2.6 10 Eu 1.38 1.42 0.91 1.5 1.16 1.36 1.76 1.4 1.13 1.02 0.91 3 Gd 5.88 4.97 3.23 5.15 4.19 5.23 6.81 5.56 4.11 3.68 2.97 7.62 Tb 0.89 0.94 0.6 0.98 0.75 0.99 1.26 1.05 0.79 0.67 0.53 1.05 Dy 5.1 6.31 3.92 6.4 4.83 6.63 8.56 7.04 5.37 4.55 3.55 5.6 Ho 1.03 1.41 0.87 1.39 1.07 1.5 1.9 1.58 1.21 1.05 0.79 2.62 Er 2.79 3.9 2.39 3.81 2.95 4.15 5.31 4.37 3.4 2.97 2.31 2.62 Tm 0.39 0.56 0.35 0.54 0.43 0.6 0.76 0.64 0.5 0.46 0.36 0.35 Yb 2.63 3.77 2.29 3.56 2.87 4.08 5.08 4.32 3.35 3.05 2.37 2.16 Lu 0.39 0.56 0.34 0.51 0.43 0.6 0.73 0.63 0.5 0.46 0.35 0.3 Y 28.7 36.6 23.6 35.2 28.4 40.1 49.6 42.4 33 28 22 29 项目 08p1 08p2 08p3 08p4 08p5 08p6 08p7 08p8 08p9 N-MORB E-MORB OIB Sr 90.5 247 531 334 442 128 108 113 248 90 155 660 Rb 108 17.1 27.2 44 26.8 14 71 17.2 6.64 0.56 5.04 31 Ba 326 45.9 37.6 69.5 405 48.1 561 26.5 20.7 6.3 57 350 Cs 4.86 3.23 5.42 6.28 4.6 1.4 2.55 1.67 1.99 0.007 0.063 0.013 U 2.91 0.17 0.23 0.35 0.55 0.3 0.19 0.19 0.22 0.047 0.18 0.075 Th 12.8 0.3 0.33 0.23 2.53 0.28 0.38 0.28 0.23 0.12 0.6 4 Ta 1.13 0.12 0.08 0.09 0.23 0.11 0.09 0.11 0.06 0.13 0.843 3 Nb 13.3 1.84 1.16 1.44 3.15 1.68 1.48 1.83 1.16 2.33 8.3 48 Zr 202 107 53.8 99.2 94.4 115 138 120 76.6 74 73 280 Hf 4.98 2.77 1.59 2.68 2.48 2.92 3.65 3.07 2.08 2.05 3.4 7.8 Th/Yb 4.87 0.08 0.14 0.06 0.88 0.07 0.07 0.06 0.07 0.04 0.25 1.85 Th/Nb 0.96 0.16 0.28 0.16 0.8 0.17 0.26 0.15 0.2 0.05 0.07 0.08 Nb/La 0.32 0.59 0.47 0.32 0.38 0.53 0.3 0.54 0.54 0.93 1.32 1.3 Hf/Th 0.39 9.23 4.82 11.65 0.98 10.43 9.61 10.96 9.04 17.08 5.67 1.95 Ce/Nb 0.12 0.93 2.41 1.39 0.65 0.85 0.97 0.87 1.6 3.22 1.81 1.67 Ti/Y 363 282 213 288 222 259 284 259 232 271 273 593 La/Ta 37 26 32 53 36 29 58 31 34 19 7 12 Hf/Ta 4.41 23.08 20.65 31.53 10.78 26.55 42.94 27.91 32.5 15.77 4.03 2.6 Sm/Nd 0.19 0.36 0.35 0.35 0.28 0.35 0.36 0.36 0.38 0.36 0.29 0.26 ∑REE 202.41 53.04 34.26 54.35 62.51 56.35 73.07 60.05 42.45 39.16 49.09 200.52 LREE/HREE 9.6 1.37 1.45 1.43 2.57 1.37 1.4 1.38 1.21 1.32 2.71 7.98 (La/Yb)n 11.48 0.6 0.77 0.91 2.07 0.56 0.7 0.56 0.46 0.59 1.91 12.29 (La/Sm)n 3.9 0.54 0.63 0.75 1.56 0.51 0.61 0.51 0.45 0.61 1.56 2.39 δEu 0.66 1 0.98 1.03 0.94 0.91 0.9 0.88 0.97 1 1 1.05 测试单位:西北大学大陆动力学国家重点实验室,2009. 表 2 石鸡河地区火山岩Sr-Nd同位素测定值
Table 2. Sr-Nd isotopic analyses of the metamorphic basic lava in the Shijihe area
样号 08p1 08p2 08p3 08p4 08p5 08p6 08p7 08p8 08p9 Rb 112.62 10.04 35.59 22.99 64.67 4.62 63.94 8.78 9.02 Sr 90.20 245.00 528.00 332.00 435.00 130.00 110.00 100.00 243.00 87Rb/86Sr 3.609 9 3.609 9 0.118 2 0.194 4 0.1997 0.428 9 0.102 6 1.678 4 0.253 3 87Sr/86Sr 0.731 01 0.731 01 0.706 82 0.707 35 0.707 38 0.708 97 0.706 71 0.717 61 0.707 76 2s 14 14 14 16 23 16 21 18 20 Nd 10.321 11.211 12.122 11.463 13.501 12.030 8.050 Sm 1.761 3.860 4.509 4.248 5.091 4.548 3.146 147Sm/144Nd 0.228 7 0.208 3 0.103 2 0.228 1 0.225 1 0.224 1 0.236 3 143Nd/144Nd 0.513 121 0.513 055 0.512 723 0.513 118 0.513 101 0.513 108 0.513 141 2σ 17 13 15 13 15 13 18 Rb/Sr 1.25 0.04 0.07 0.07 0.15 0.04 0.58 0.09 0.04 Sm/Nd 0.17 0.34 0.37 0.37 0.38 0.38 0.39 εSr(t) 34 30 30 30 30 30 31 30 29 εNd(t) 7.5 7.4 7.4 7.5 7.3 7.5 7.4 εSr(0) 376 33 40 41 64 31 186 46 32 εNd(0) 9.4 8.1 1.7 9.4 9.0 9.2 9.8 测试单位:西北大学大陆动力学国家重点实验室,2009.Sr-Nd同位素测定时t=480 Ma;Rb、Sr、Nd和Sm单位为10-6. -
[1] Black, L.P., 1988. Isotopic resetting of U-Pb zircon and Rb-Sr and Sm-Nd whole-rock systems in enderby land, Antarctica: implications for the interpretation of isotopic data from polymetamorphic and multiply deformed terrains. Precambrian Research, 38(4): 355-365. doi: 10.1016/0301-9268(88)90033-2 [2] DePaolo, D.J., 1976. Nd isotopic variations and petrogenetic models. Geophysical Research Letters, 3(5): 249-252. doi: 10.1029/GL003i005p00249 [3] Dong, G.A., Yang, H.R., Yang, H.Y., et al., 2007. Shrimp U-Pb geochronology of the zircons from the Precambrian basement of the Qilian block and its geological significances. Chinese Science Bulletin, 52(19): 2687-2701. doi: 10.1007/s11434-007-0356-0 [4] Du, Y.S., Zhu, J., Gu, S.Z., 2006. Sedimentary geochemistry and tectonic significance of Ordovician cherts in Sunan, North Qilian Mountains. Earth Science—Journal of China University of Geosciences, 31(1): 101-109 (in Chinese with English abstract). http://www.cqvip.com/main/zcps.aspx?c=1&id=21187285 [5] Du, Y.S., Zhu, J., Gu, S.Z., et al., 2007. Sedimentary geochemistry of the Cambrian-Ordovician cherts: implication on archipelagic ocean of North Qilian orogenic belt. Science in China (Series D), 50(11): 1628-1644. doi: 10.1007/s11430-007-0111-z [6] Fan, G.M., Lei, D.N., 2007. Precise timing and significance of Caledonian structural deformation chronology in Southeast Qilian. Earth Science—Journal of China University of Geosciences, 32(1): 39-44 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200701004.htm [7] Foster, G.L., Carter. A., 2007. Insights into the patterns and locations of erosion in the Himalaya—a combined fission-track and in situ Sm-Nd isotopic study of detrital apatite. Earth and Planetary Science Letters, 257(3-4): 407-418. doi: 10.1016/j.epsl.2007.02.044 [8] Freeman, S.R., Butler, R.W.H., Cliff, R.A., et al., 1998. Direct dating of mylonite evolution: a multi-disciplinary geochronological study from the Moine thrust zone, NW Scotland. Journal of the Geological Society, 155(5): 745-758. doi: 10.1144/gsjgs.155.5.0745 [9] Govindaraju, K., 1994. Compilation of working values and sample description for 383 geostandards. Geostandards and Geoanalytical Research, 18(Suppl. ): 1-158. doi: 10.1046/j.1365-2494.1998.53202081.x-i1 [10] He, S.P., Wang, H.L., Chen, J.L., et al., 2008. LA-ICP-MS U-Pb zircon geochronology of basic dikes within maxianshan rock group in the Central Qilian Mountains and its tectonic implications. Earth Science—Journal of China University of Geosciences, 33(1): 35-45 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.005 [11] Hofmann, A.W., Hart, S.R., 1978. An assessment of local and regional isotopic equilibrium in the mantle. Earth and Planetary Science Letters, 38(1): 44-62. doi: 10.1016/0012-821X(78)90125-5 [12] Hou, Q.Y., Zhang, H.F., Zhang, B.R., et al., 2005. Characteristics and tectonic affinity of Lajishan paleo-mantle in Qilian orogenic belt: a geochemical study of basalts. Earth Science—Journal of China University of Geosciences, 30(1): 61-70 (in Chinese with English abstract). http://www.researchgate.net/publication/283797264_Characteristics_and_tectonic_affinity_of_Lajishan_paleo-mantle_in_Qilian_orogenic_belt_A_Geochemical_study_of_basalts [13] Kang, H.J., Sun, B.N., Liu, X.H., et al., 2008. Stable isotopic characteristics of Xiliugou polymetallic deposit in the western part of the North Qilian Mountains. Geological Journal of China Universities, 14(3): 433-441 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200803018.htm [14] Li, W.Y., Guo, Z.P., Wang, W., 2005. Caledonian convergent transformation and metallogenetic response in the North Qilian Mountains. Geological Review, 51(2): 120-127 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200502002.htm [15] Li, W.Y., Li, S.G., Guo, A.L., et al., 2007. Zircon shrimp U-Pb ages and trace element geochemistry of the Kuhai gabbro and the Dur'ngoi diorite in the southern east Kunlun tectonic belt, Qinghai, Western China and their geological implications. Science in China (Series D), 50(Suppl. 2): 331-338. doi: 10.1007/s11430-007-0003-4. [16] Li, X.H., Li, Z.X., Zhou, H.W., et al., 2003. Shrimp U-Pb zircon age, geochemistry and Nd isotope of the Guandaoshan pluton in SW Sichuan: petrogenesis and tectonic significance. Science in China (Series D), 46(Suppl. 1): 73-83. http://www.cnki.com.cn/Article/CJFDTotal-JDXG2003S2006.htm [17] Liu, X.H., Sun, B.N., Qu, W.J., et al., 2007. Re-Os dating of molybdenite in Xiliugou W. Mo deposit in western part of North Qilian Mountains and its geological significance. Acta Petrologica Sinica, 23(10): 2434-2442 (in Chinese with English abstract). [18] McCulloch, M.T., Black, L.P., 1984. Sm-Nd isotopic systematics of Enderby Land granulites and evidence for the redistribution of Sm and Nd during metamorphism. Earth and Planetary Science Letters, 71(1): 46-58. doi: 10.1016/0012-821X(84)90051-7 [19] McCulloch, M.T., Jaques, A.L., Nelson, D.R., et al., 1983. Nd and Sr isotopes in kimberlites and lamproites from western Australia: an enriched mantle origin. Nature, 302: 400-403. doi: 10.1038/302400a0 [20] McFarlane, C.R.M., McCulloch, M.T., 2007. Coupling of in-situ Sm-Nd systematics and U-Pb dating of monazite and allanite with applications to crustal evolution studies. Chemical Geology, 245(1-2): 45-60. doi: 10.1016/j.chemgeo.2007.07.020 [21] O'Nions, R.K., Hamilton, P.J., Evensen, N.M., 1977. Variations in 143Nd/144Nd and 87Sr/86Sr in oceanic basalts. Earth and Planetary Science Letters, 34(1): 13-22. doi: 10.1016/0012-821X(77)90100-5 [22] Su, Q., Fullagar, P.D., 1995. Rb-Sr and Sm-Nd isotopic systematics during greeschist facies metamorphism and deformation: examples from the southern Appalachian Blue Ridge. The Journal of Geology, 103(4): 423- 436. doi: 10.1086/629761 [23] Wan, Y.S., Xu, Z.Q., Yang, J.S., et al., 2003. The Precambrian high-grade basement of the Qilian terrane and neighboring areas: its ages and compositions. Acta Geoscientia Sinica, 24(4): 319-324 (in Chinese with English abstract). http://www.researchgate.net/publication/303233271_Precambrian_high-grade_basement_of_the_Qilian_terrane_and_neighboring_areas_its_ages_and_compositions [24] Whitehouse, M.J., 1988. Granulite facies Nd-isotopic homogenization in the Lewisian complex of Northwest Scotland. Nature, 331: 705-707. doi: 10.1038/331705a0 [25] Xia, L.Q., Xia, Z.C., Xu, X.Y., 1996. Petrogenesis of marine volcanic rocks from North Qilian Mountains. Geological Publishing House, Beijing, 1-152 (in Chinese). [26] Xia, L.Q., Xia, Z.C., Xu, X.Y., 2003. Magmagenesis of Ordovician back-arc basins in the northern Qilian Mountains. Chinese Geology, 30(1): 48-60 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_NSTL_QKJJ029173347.aspx [27] Xia, L.Q., Xia, Z.C., Zhao, J.T., et al., 2000. Determination of properties of Proterozoic continental flood basalts of western part from North Qilian Mountains. Science in China (Series D), 42(5): 506-514. doi: 10.1007/BF02875244 [28] Xu, W.D., Zhou, X.W., Li, J.J., et al., 2006. The sequence stratigraphical characters of the Silurian system in the West of the northern Qilanshan. Geological Survey and Research, 29(2): 92-97 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-QHWJ200602002.htm [29] Xu, Z.Q., Zhao, Z.X., Yang, J.S., et al., 2003. Tectonics beneath plates and mantle dynamics. Regional Geology of China, 22(3): 149-159 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200303001.htm [30] Yan, Z., Li, J.L., Yong, Y., et al., 2008. Tectonic environment of Ordovician carbonate-cherts in the Shihuigou area, North Qilian orogen. Acta Petrologica Sinica, 24(10): 2384-2394 (in Chinese with English abstract). http://www.oalib.com/paper/1472955 [31] Yang, Y.H., Zhang, H.F., Xie, L.W., et al., 2007. Accurate measurement of neodymium isotopic composition using neptune multiple collector inductively coupled plasma mass spectrometry. Chinese Journal of Analytical Chemistry, 35(1): 71-74 (in Chinese with English abstract). http://www.researchgate.net/publication/279795050_Accurate_measurement_of_neodymium_isotopic_composition_using_Neptune_multiple_collector_inductively_coupled_plasma_mass_spectrometry [32] Yu, S.Y., Zhang, J.X., Meng, F.C., et al., 2007. Geochemical characteristics of low-temperature eclogites from the subduction-accretionary complex in the North Qilian Mountain. Acta Petrologica et Mineralogica, 26(2): 101-108 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-mineralogica_thesis/0201254451709.html [33] Zeng, J.Y., Yang, H.R., Yang. H.Y., et al., 2007. The Dongcaohe ophiolite from the North Qilian Mountains: a fossil oceanic crust of the Paleo-Qilian ocean. Chinese Science Bulletin, 52(17): 2390-2401. doi: 10.1007/s11434-007-0300-3 [34] Zhang, H.F., Jin, L.L., Zhang, L., et al., 2006. Pb and Nd isotopic compositions of basement and granitoid in the Qilianshan: constraints on tectonic affinity. Earth Science—Journal of China University of Geosciences, 31(1): 57-65 (in Chinese with English abstract). http://www.researchgate.net/publication/279708105_Pb_and_Nd_isotopic_compositions_of_basement_and_granitoid_in_the_Qilianshan_Constraints_on_tectonic_affinity [35] Zhong, Z, H., Zhang, Q, L., Sun Z., 1997. Rb-Sr and Sm-Nd isotopic systems in ductile shear zone. Geology-Geochemistry, 3: 70-75 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDQ199703010.htm [36] Zuo, G.C., Liu, Y.K., Zhang, C., 2002. Tectono-stratigraphic characteristics of continent crustal remnants in central-western sector of the North Qilian orogen. Scientia Geologica Sinica, 37(3): 302-312 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX200203006.htm [37] 董国安, 杨怀仁, 杨宏仪, 等, 2007. 祁连地块前寒武纪基底锆石SHRIMP U-Pb年代学及其地质意义. 科学通报, 52(13): 1572-1585. doi: 10.3321/j.issn:0023-074X.2007.13.015 [38] 杜远生, 朱杰, 顾松竹, 2006. 北祁连肃南一带奥陶纪硅质岩沉积地球化学特征及其多岛洋构造意义. 地球科学——中国地质大学学报, 31(1): 101-109. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200601014.htm [39] 杜远生, 朱杰, 顾松竹, 等, 2007. 北祁连造山带寒武系-奥陶系硅质岩沉积地球化学特征及其对多岛洋的启示. 中国科学(D辑), 37(10): 1314-1329. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200710006.htm [40] 樊光明, 雷东宁, 2007. 祁连山东南段加里东造山期构造变形年代的精确限定及其意义. 地球科学——中国地质大学学报, 32(1): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200701004.htm [41] 何世平, 王洪亮, 陈隽璐, 等, 2008. 中祁连马衔山岩群内基性岩墙群锆石LA-ICP-MS U-Pb年代学及其构造意义. 地球科学——中国地质大学学报, 33(1): 35-45. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200801008.htm [42] 侯青叶, 张宏飞, 张本仁, 等, 2005. 祁连造山带中部拉脊山古地幔特征及其归属: 来自基性火山岩的地球化学证据. 地球科学——中国地质大学学报, 30(1): 61-70. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200501008.htm [43] 康洪杰, 孙柏年, 刘晓煌, 等, 2008. 北祁连山西段西柳沟铅锌矿稳定同位素特征. 高校地质学报, 14(3): 433-441. doi: 10.3969/j.issn.1006-7493.2008.03.015 [44] 李王晔, 李曙光, 郭安林, 等, 2007. 青海东昆南构造带苦海辉长岩和德尔尼闪长岩的锆石SHRIMP U-Pb年龄及痕量元素地球化学——对"祁-柴-昆"晚新元古代-早奥陶世多岛洋南界的制约. 中国科学(D辑), 50(增刊2): 331-338. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2007S1030.htm [45] 李文渊, 郭周平, 王伟, 2005. 北祁连山加里东期聚敛作用的构造转换及其成矿响应. 地质论评, 51(2): 120-127. doi: 10.3321/j.issn:0371-5736.2005.02.002 [46] 刘晓煌, 孙柏年, 屈文俊, 等, 2007. 北祁连山西段西柳沟钨钼矿的Re-Os定年及地质意义. 岩石学报, 23(10): 2434-2442. doi: 10.3969/j.issn.1000-0569.2007.10.012 [47] 万渝生, 许志琴, 杨经绥, 等, 2003. 祁连造山带及邻区前寒武纪深变质基底的时代和组成. 地球学报, 24(4): 319-324. doi: 10.3321/j.issn:1006-3021.2003.04.005 [48] 夏林圻, 夏祖春, 徐学义, 1996. 北祁连山海相火山岩岩石成因. 北京: 地质出版杜, 1-152. [49] 夏林圻, 夏祖春, 徐学义, 2003. 北祁连山奥陶纪弧后盆地火山岩浆成因. 中国地质, 30(1): 48-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200301005.htm [50] 夏林圻, 夏祖春, 赵江天, 等, 2000. 北祁连山西段元古宙大陆溢流玄武岩性质的确定. 中国科学(D辑), 30(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200001000.htm [51] 徐卫东, 周学武, 李俊建, 等, 2006. 北祁连西段志留系层序地层学特征. 地质调查与研究, 29(2): 92-97. doi: 10.3969/j.issn.1672-4135.2006.02.003 [52] 许志琴, 赵志兴, 杨经绥, 等, 2003. 板块下的构造及地幔动力学. 地质通报, 22(3): 149-159. doi: 10.3969/j.issn.1671-2552.2003.03.002 [53] 闫臻, 李继亮, 雍拥, 等, 2008. 北祁连石灰沟奥陶纪碳酸盐岩-硅质岩形成的构造环境. 岩石学报, 24(10): 2384-2394. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200810019.htm [54] 杨岳衡, 张宏福, 谢烈文, 等, 2007. 多接收器电感耦合等离子质谱精确测定钕同位素组成. 分析化学, 35(1): 71-74. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX200701018.htm [55] 于胜尧, 张建新, 孟繁聪, 等, 2007. 北祁连俯冲-增生杂岩带中低温榴辉岩的地球化学特征. 岩石矿物学杂志, 26(2): 101-108. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200702000.htm [56] 曾建元, 杨怀仁, 杨宏仪, 等, 2007. 北祁连东草河蛇绿岩: 一个早古生代的洋壳残片. 科学通报, 52(7): 825-835. doi: 10.3321/j.issn:0023-074X.2007.07.017 [57] 张宏飞, 靳兰兰, 张利, 等, 2006. 基底岩系和花岗岩类Pb-Nd同位素组成限定祁连山带的构造属性. 地球科学——中国地质大学学报, 31(1): 57-65. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200601008.htm [58] 钟志洪, 张庆龙, 孙珍, 1997. 韧性剪切带中的Rb-Sr和Sm-Nd同位素体系. 地质地球化学, 3: 70-75. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ199703010.htm [59] 左国朝, 刘义科, 张崇, 2002. 北祁连造山带中-西段陆壳残块群的构造-地层特征. 地质科学, 37(3): 302-312. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200203006.htm