Geology and Geochemistry of the Yingmailai Granitic Intrusion in the Southern Tianshan and Its Implications
-
摘要: 新疆英买来岩体位于南天山中段, 其主体由黑云母钾长花岗岩组成, 局部有二云母钾长花岗岩, 形成于晚二叠世.岩体中有两种少量椭球状的包体, 一是暗色细粒包体, 二是浅色包体.花岗岩和包体的地球化学特征基本相似, 它们在主量元素特征上以高Si、富K、富碱, 贫Mg、Ca为特征, 微量元素特征上表现为富Rb、Ba、Th以及轻重稀土的高度分馏和Nb、Ta、Zr、Hf等的负异常.花岗岩和包体的Harker图解显示出一致的变化趋势, 表明它们是同源岩浆演化的产物.其A/CNK值为0.99~1.08, 显示出准铝-过铝的特点, 而稀土元素配分曲线则显示出强烈富集轻稀土和明显的负Eu异常.结合其高的(87Sr/86Sr)t值(0.71036~0.71585)和负的εNd(t)值(-1.67~-6.45), 推测岩浆起源于壳源含斜长石的角闪石质岩石脱水条件下的部分熔融(深度<50km), 其母岩浆在就位前发生了以黑云母和斜长石为主伴随有磁铁矿等副矿物的分离结晶作用.英买来花岗岩体的岩石类型以及地球化学特征表明其是介于A型和S型之间的一种过渡类型花岗岩类, 其形成时的构造环境为碰撞晚期或接近碰撞结束向后碰撞过渡阶段.Abstract: The Late Permian Yingmailai granitic intrusion is located in the middle part of the southern Tianshan. It consists predominantly of biotite K-feldspar granite with minor two-mica K-feldspar granite. Two types of ellipse-shaped xenoliths including dark-color fine-granular xenolith and light-color granitic xenolith have been recognized in the granitic intrusion. The xenoliths share geochemical similarities with granites. They are characterized by high SiO2 contents, enrichment of K and total alkali coupled with low MgO and CaO contents. Furthermore, they display the enrichment in Rb, Ba, Th and REE as well as significant fractionation of LREE from HREE, and negative Nb, Ta, Zr and Hf anomalies on the ORG normalized trace element patterns. The similar variation trends of major oxides between granites and xenoliths on the Harker diagram suggest that they derived from a common parental magma. The A/CNK ratios range from 0.99 to 1.08, meta-aluminous to per-aluminous feature. The chondrite-normalized REE patterns are characterized by strong enrichment of LREE relative to HREE and significantly negative Eu anomalies. In combination with their high (87Sr/86Sr)t ratios (0.71036 to 0.71585) and negative εNd(t) values (-1.67 to -6.45), it can be inferred that the magmas might have been produced by dehydration melting of crust-source amphibole-bearing mafic rocks (< 50km), and that crystal fractionation of biotite and plagioclase with minor magnetite might have occurred before emplacement. The petrological and geochemical characteristics of the granitic rocks suggest that the intrusion is a transition type between A and S types, and formed in the late or end stage of collision between Tarim and Kazakhstan plate in Late Permian time.
-
Key words:
- two-mica granite /
- geochemistry /
- crust source /
- Permian /
- southern Tianshan
-
图 1 新疆构造单元划分(a)和英买来岩体地质图(b)(据新疆地质矿产局第八地质大队2008年资料修改)
Ⅲ.塔里木-卡拉库姆板块;Ⅲ1.塔里木微板块;Ⅲ11.东阿莱-哈尔克古生代复合沟弧带;Ⅲ12.艾尔宾晚古生代残斜盆地;Ⅲ13.阔克塔勒晚古生代陆缘盆地;Ⅲ14.虎拉山晚古生代裂陷槽;Ⅲ15.柯坪前陆盆地;Ⅲ16.库鲁克塔格陆缘地块;Ⅲ17.塔里木中央地块;1.第四系覆盖;2.阿克苏群片麻岩、浅粒岩、云母片岩;3.二叠纪中粗粒似斑状钾长花岗岩;4.二叠纪粗粒似斑状钾长花岗岩;5.二叠纪细粒花岗闪长岩;6.青白口纪片麻状粗粒二长花岗岩;7.辉绿岩脉;8.岩相界线;9.逆断层及产状;10.采样点
Fig. 1. Tectonic units of Xinjian (a) and geologic map of the Yingmailai intrusion (b)
图 2 花岗岩中的细粒包体(包体和花岗岩有明显的界线)以及典型的岩相学特征
a.粗粒黑云母钾长花岗岩中的暗色细粒包体,界线清晰(野外照片);b.粗粒黑云母钾长花岗岩中的浅色花岗质岩石包体(野外照片);c.暗色细粒包体中黑云母自形程度较高,而其他浅色矿物呈半自形或他形,显示出同结现象(正交偏光);d.中粗粒黑云母钾长花岗岩中的微斜长石斑晶(正交偏光);e.中粗粒黑云母钾长花岗岩的基质(正交偏光);f.粗粒二云母钾长花岗岩中的文象结构(正交偏光);g.粗粒二云母钾长花岗岩,自形程度较高的白云母分布在微斜长石中(正交偏光);h.粗粒二云母钾长花岗岩,黑云母自形程度高,白云母与其共生(正交偏光)
Fig. 2. Fine-granular xenolith in the granite (distinct boundary between granite and xenolith can be recognized) and typical petrographic features of the granite and xenolith
图 4 英买来花岗岩和包体的球粒陨石标准化曲线(球粒陨石标准化数据据Sun and McDonough, 1989)
两条细虚线之间的区域代表前人测得的该地区钾长花岗岩稀土元素配分曲线范围,据姜常义等(1999);两条粗虚线之间的区域代表前人测得的南天山西段川乌鲁杂岩体稀土元素配分曲线范围,据黄河等(2010)
Fig. 4. Chindrite-normalized REE patterns of the Yingmailai granites and xenoliths
图 5 英买来花岗岩和包体的洋脊花岗岩标准化曲线(标准化数据Pearce et al., 1984)
Fig. 5. ORG-normalized trace element patterns of the Yingmailai granites and xenoliths
图 7 Nb-Y和Rb-(Y+Nb)图解(底图据Pearce et al., 1984)
Fig. 7. Diagrams of Nb versus Y and Rb versus Y+Nb
表 1 英买来花岗岩体和包体的主量元素分析结果(%)
Table 1. Major element analyses of the Yingmailai granites and xenoliths
样品 Q01 Q03 Q04 Q05 Q06 Q07 Q08 Q09 Qab01 Qab03 Qab05 Qabb SiO2 73.9 71.3 72.1 74.7 77.6 74.4 77 74.4 75.1 69.9 76.4 66.2 TiO2 0.11 0.26 0.22 0.12 0.18 0.21 0.15 0.16 0.16 0.59 0.13 0.78 Al2O3 13.6 13.91 13.62 13.3 11.25 12.75 11.86 12.51 12.56 13.5 11.91 14.12 Fe2O3 1.33 3.27 2.67 1.22 1.88 2.22 1.67 1.64 1.58 5.81 1.63 8.23 FeO 0.92 2.13 1.67 0.94 1.41 1.58 1.14 1.19 1.18 4.49 1.21 6.64 MnO 0.03 0.06 0.05 0.02 0.03 0.03 0.02 0.02 0.02 0.08 0.03 0.11 MgO 0.12 0.18 0.17 0.18 0.21 0.25 0.21 0.19 0.21 0.78 0.19 1.13 CaO 0.84 1.33 1.09 0.75 0.69 0.96 0.81 0.85 0.73 1.88 0.45 2.04 Na2O 3.39 3.39 3.15 2.96 2.6 2.97 2.74 2.91 2.78 3.73 2.42 4.04 K2O 5.9 5.6 6.1 6.2 4.8 5.3 4.9 5.4 5.9 3 5.9 2.5 P2O5 0.06 0.09 0.08 0.07 0.08 0.09 0.08 0.08 0.07 0.25 0.07 0.33 LOI 0.68 0.49 0.41 0.5 0.38 0.56 0.64 0.54 0.47 0.91 0.5 0.86 SUM 100 99.9 99.7 101.1 99.7 99.1 101.1 99.6 99.6 100.4 99.7 100.3 A/KN 1.14 1.2 1.15 1.14 1.19 1.2 1.2 1.18 1.15 1.44 1.15 1.51 A/CNK 1.011 0.99 0.988 1.024 1.048 1.028 1.048 1.028 1.024 1.057 1.067 1.082 δ 2.774 2.845 2.956 2.672 1.587 2.197 1.733 2.172 2.333 1.671 2.061 1.841 注:A/KN=Al2O3/(K2O+Na2O)(分子比);A/CNK=Al2O3/(Na2O+K2O+CaO)(分子比);δ=(K2O+Na2O)2/(SiO2-43). 表 2 英买来花岗岩体和包体的微量元素分析结果(10-6)
Table 2. Trace element analyses of the Yingmailai granites and xenoliths
样品 Q01 Q03 Q04 Q05 Q06 Q07 Q08 Q09 Qab01 Qab03 Qab05 Qabb La 54.5 39.3 83.1 42.2 73.2 31.3 34.3 26.7 45 32.3 24.9 32.8 Ce 102 78.3 157 90.4 153 64.3 75 59.4 96.9 69.7 55.7 72.1 Pr 19.6 12.8 25.3 14.4 26.2 10.8 11.7 9.28 15.6 11.3 8.71 11.7 Nd 38.1 32 54.6 32 57.1 25.1 26.6 21.3 38.1 26.3 19.7 28.8 Sm 8.38 7.36 8.45 7.21 8.63 5.75 5.86 4.89 8.32 5.67 4.11 6.63 Eu 3.17 1.96 1.88 0.465 0.408 0.475 0.303 0.224 0.422 0.362 0.205 0.361 Gd 11.5 10.7 12 7.02 11.5 7.2 6.46 4.82 8.1 7.89 5.02 9.51 Tb 1.62 1.59 1.55 1 1.51 1.1 0.841 0.622 1.12 1.23 0.801 1.61 Dy 7.83 7.65 7.51 5.11 7.24 6.04 3.83 3 5.94 6.44 4.58 8.28 Ho 1.36 1.34 1.15 0.958 1.25 1.14 0.641 0.532 1.11 1.07 0.943 1.45 Er 3.15 3.08 2.97 2.39 3.06 2.9 1.48 1.32 2.81 2.53 2.59 3.26 Tm 0.654 0.596 0.482 0.357 0.421 0.425 0.2 0.19 0.413 0.322 0.376 0.417 Yb 3.15 3.1 2.99 2.08 2.39 2.4 1.07 1.08 2.39 1.59 1.98 2.02 Lu 0.461 0.442 0.426 0.303 0.339 0.347 0.152 0.162 0.162 0.345 0.211 0.251 Ba 734 783 762 244 268 315 180 138 219 137 150 145 Cu 176 27.1 85.1 300 235 286 61.2 38.8 19.6 50.6 47.4 167 Sr 49.2 67.2 66.3 33.9 29.5 54.1 25.4 41.8 30.4 29.8 16.8 28.9 V 6.26 5.19 4.44 6.09 6.04 6.49 4.52 3.29 4.16 21 3.38 34.2 Zn 91.8 86.6 88.1 77 63.6 372 548 260 67.3 121 48.2 219 Co 0.487 0.811 0.62 0.674 0.965 1.98 1.19 1.27 0.8 3.45 0.545 6.21 Ga 48.7 49.5 47.3 20.2 22 24.2 21.5 12.1 18.7 15.2 12.8 18.7 Rb 101 154 158 162 151 158 107 87.4 152 173 132 222 Th 22.4 25.9 29.9 29.9 67.5 53.1 34.3 23.7 35.2 31.2 16.2 24.8 U 3.42 3.91 2.84 2.04 5.49 10 2.22 7.46 2.86 0.986 1.11 0.55 Cr 17.3 30.3 14.6 14.6 11.5 24 19.5 21.5 12.6 25.7 10.5 13.4 Ni 2.41 1.69 1.62 2.22 1.66 4.68 14.5 0.223 2.03 2.86 1.78 4.7 Zr 3.34 11.2 13.8 4.67 3.05 6.7 2.58 3.75 2.98 7.16 0.63 3.33 Nb 22.3 39.3 29.4 14.3 20.0 22.7 16.4 16.7 17.8 23.5 17.8 23.1 Hf 0.911 1.84 2.33 1.07 0.366 1.02 0.367 0.486 0.319 0.927 0.098 0.256 Ta 1.25 1.34 1.20 0.98 1.18 0.99 1.27 1.60 0.83 0.90 0.76 0.71 W 5.92 2.92 2.53 2.47 2.02 38.4 3.69 33.3 7.84 5.29 2.16 3.23 Y 35.9 58.9 55.8 21.4 28.4 25.6 14.4 12.3 24.7 23.6 22.6 31.4 ∑REE 255.48 200.22 359.41 205.89 346.25 159.28 168.44 133.52 226.39 167.05 129.83 179.19 LREE 225.75 171.72 330.33 186.68 318.54 137.73 153.76 121.79 204.34 145.63 113.33 152.39 HREE 29.73 28.50 29.08 19.22 27.71 21.55 14.67 11.73 22.05 21.42 16.50 26.80 LREE/HRE 7.59 6.03 11.36 9.71 11.50 6.39 10.48 10.39 9.27 6.80 6.87 5.69 (La/Yb)n 9.56 7.65 15.92 12.89 19.50 8.01 21.32 15.84 25.84 8.73 11.40 12.41 δEu 1.00 0.68 0.58 0.20 0.13 0.23 0.15 0.14 0.16 0.17 0.14 0.14 δCe 1.79 1.48 1.54 1.51 1.60 1.54 1.48 1.48 1.48 1.51 1.48 1.48 表 3 英买来花岗岩体和包体的Sr和Nd同位素成分
Table 3. Sr and Nd isotopic compositions of the Yingmailai granites and xenoliths
样品 Q01 Q03 Q04 Q05 Q06 Q07 Q08 Q09 Qab 01 Qab 03 Qab 05 Qabb Rb(10-6) 107.2 155.1 160.5 158.9 148.7 161.5 110.9 90.23 149.8 170.7 129.8 226.2 Sr(10-6) 51.23 69.76 63.85 34.71 30.25 52.81 27.32 39.89 29.15 28.53 15.45 31.23 87Rb/86Sr 6.055 6.781 7.062 14.13 15.14 8.632 12.39 6.139 14.94 17.12 23.18 22.71 87Sr/86Sr 0.737603 0.740051 0.737133 0.764298 0.765357 0.743812 0.75803 0.735034 0.76403 0.772631 0.795005 0.793691 (87Sr/86Sr)t 0.715850 0.715689 0.711762 0.713534 0.710964 0.7128 0.713517 0.712979 0.710356 0.711125 0.711728 0.712102 Sm(10-6) 7.998 7.235 8.172 7.504 7.954 5.841 5.702 4.775 5.568 5.524 4.156 6.498 Nd(10-6) 37.23 31.45 53.78 31.96 56.33 23.76 26.81 20.99 33.87 6.094 20.18 27.33 147Sm/144Nd 0.1209 0.1201 0.1108 0.1112 0.1013 0.1204 0.1208 0.1195 0.1305 0.1328 0.1259 0.1231 143Nd/144Nd 0.512205 0.512184 0.512217 0.512208 0.512186 0.512179 0.512195 0.512187 0.512441 0.512429 0.512398 0.512323 (143Nd/144Nd)t 0.512001 0.511981 0.51203 0.51202 0.512015 0.511976 0.511991 0.511985 0.512221 0.512205 0.512185 0.512115 εNd(t) -5.96 -6.34 -5.39 -5.58 -5.68 -6.45 -6.15 -6.26 -1.67 -1.98 -2.35 -3.73 注:年龄校正采用t=258Ma;(143Nd/144Nd)CHUR=0.512638;(147Sm/144Nd)CHUR=0.1967;λSr=1.39×10-11/a;λSm=6.54×10-12/a. 表 4 英买来岩体和A型花岗岩特征比较
Table 4. Comparison of the Yingmailai intrusion with A type of granite
英买来岩体 A型花岗岩 参考文献 Na2O+K2O 7.5~9.3 7~11% Eby(1990);谭俊等(2008) CaO 0.7~1.3 <1.8% FeO*/MgO 5~12 8~80 KN/A 0.83~0.88 >0.85 Whalen(1987) Zr+Nb+Ce+Y 92~256×10-6 >350×10-6 稀土总量 134~359×10-6 平均219.03×10-6 稀土配分形式 “V”字型,重稀土分馏明显 “V”字型,重稀土分馏不明显 (Ga/Al)×10000 1.8~6.7 >2.5 -
[1] Allen, M.B., Windley, B.F., Zhang, C., 1993. Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, Central Asia. Tectonophysics, 220(1-4): 89-115. doi: 10.1016/0040-1951(93)90225-9 [2] Beard, J.S., Lofgren, G.E., 1991. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9kb. J. Petrol., 32: 365-401. doi: 10.1093/petrology/32.2.365 [3] Brookfield, M.E., 2000. Geological development and Phanerozoic crustal accretion in the western segment of the southern Tien Shan Kyrgyzstan, Uzbekistan and Tagikistan. Tectonophysics, 328: 1-14. doi: 10.1016/S0040-1951(00)00175-X [4] Chen, B., Arakawa, Y., 2005. Elemental and Nd-Sr isotopic geochemistry of granitoids from the west Junggar fold belt (NW China), with implications for Phanerozoic continental growth. Geochimica et Cosmochimica Acta, 69: 1307-1320. doi: 10.1016/j.gca.2004.09.019 [5] Chen, C., Lu, F., Jia, D., et al., 1999. Clsoing history of the southern Tianshan oceanic basin, western China: an oblique collisional orogeny. Tectonophysics, 302: 23-40. doi: 10.1016/S0040-1951(98)00273-X [6] Chen, W., Zhang, Y., Qin, K.Z., et al., 2007. Study on the age of the shear zone-type gold deposit of East Tianshan, Xinjiang, China. Acta Petrologica Sinica, 23(8): 2007-2016 (in Chinese with English abstract). [7] Coleman, R.G., 1989. Continental growth of northwestern China. Tectonics, 8: 621-635. doi: 10.1029/TC008i003p00621 [8] Deng, J.F., Luo, Z.H., Su, S.G., et al., 2004. Lithofacies, tectonic setting and metalization. Geological Publishing House, Beijing, 42-46 (in Chinese). [9] Du, Y.S., Qin, X.L., Li, X.J., 2004. Mesozoic mantle-drived magma underplating in Tongling, Anhui Province: evidence from megacrysts and xenoliths. Acta Petrologica et mineralogica, 23(2): 109-116 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200402001.htm [10] Eby, G.N., 1990. The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, 26(1-2): 115-134. doi: 10.1016/0024-4937(90)90043-Z [11] Eby, G.N., 1992. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology, 20: 641-644. doi:10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2 [12] Gao, J., He, G.Q., Li, M.S., 1997. Paleozoic orogenic processes of western Tianshan orogen. Earth Science—Journal of China University of Geosciences, 22(1): 27-32 (in Chinese with English abstract). http://www.researchgate.net/publication/281381312_Paleozoic_orogenic_processes_of_western_Tianshan_Orogen/download [13] Gao, J., Li, M., Xiao, X., et al., 1998. Paleozoic tectonic evolution of the Tianshan orogen, northwestern China. Tectonophysics, 287(1): 213-231. doi: 10.1016/S0040-1951(97)00211-4 [14] Gao, J., Long, L.L., Qian, Q., et al., 2006. South Tianshan: a Late Paleozoic or a Triassic orogen?Acta Petrologica Sinica, 22(5): 1049-1061 (in Chinese with English abstract). [15] Hong, D.W., Wang, S.G., Xie, X.L., et al., 2003. Metallogenic province derived from mantle sources: Nd, Sr, S and Pb isotope evidence from the Central Asian orogenic belt. Gondwana Research, 6(4): 711-728. doi: 10.1016/S1342-937X(05)71019-4 [16] Huang, H., Zhang, D.Y., Zhang, Z.C., et al., 2010. Petrology and geochemistry of the Chuanwulu alkaline complex in south Tianshan: constraints on petrogenesis and tectonic setting. Acta Petrologica Sinica, 26(3): 947-962 (in Chinese with English abstract). http://www.oalib.com/paper/1473860 [17] Jiang, C.Y., Mu, Y.M., Bai, K.Y., et al., 1999. Chronology, petrology, geochemistry and tectonic environment of granitoids in the southern Tianshan, western China. Acta Petrologica Sinica, 15(2): 298-308 (in Chinese with English abstract). http://www.oalib.com/paper/1472082 [18] Kempe, U., Belyatsky, B.V., Krymsky, R.S., et al., 2001. Sm-Nd and Sr isotope systematics of scheelite from the giant Au (W) deposit Muruntau (Uzbekistan): implications for the age and sources of Au mineralization. Mineralium Deposita, 36: 379-392. doi: 10.1007/s001260100156 [19] Li, H.Q., Xie, C.F., Chang, H.L., et al., 1998. Metallization chronology of nonferrous metal deposit, North Xinjiang. Geological Publishing House, Beijing, 4-9 (in Chinese). [20] Li, Y.J., Song, W.J., Mai, G.R., et al., 2001. Characteristics of Kuqa and northern Tarim foreland basins and their coupling relation to South Tianshan orogeny. Xinjiang Petroleum Geology, 22(5): 376-381 (in Chinese). http://www.researchgate.net/publication/281496323_Characteristics_of_Kuqa_and_Northern_Tarim_foreland_basins_and_their_coupling_rrelation_to_south_Tianshan_orogeny [21] Liu, J.J., Zheng, M.H., Cook, N.J., et al., 2007. Geological and geochemical characteristics of the Sawaya'erdun gold deposit, southwestern Chinese Tianshan. Ore Geology Reviews, 32: 125-156. doi: 10.1016/j.oregeorev.2006.11.003 [22] Mao, J.W., Konopelko, D., Seltmann, R., et al., 2004. Postcollisional age of the Kumtor gold deposit and timing of Hercynian events in the Tien Shan, Kyrgyzstan. Economic Geology, 99(8): 1771-1780. doi: 10.2113/99.8.1771 [23] Montel, J.M., Vielzeuf, D., 1997. Partial melting of metagreywackes, part Ⅱ: compositions of minerals and melts. Contrib. Mineral. Petrol., 128: 176-196. doi: 10.1007/s004100050302 [24] Morelli, R., Creaser, R.A., Seltmann, R., et al., 2007. Age and source constraints for the giant Muruntau gold deposit, Uzbekistan, from couples Re-Os-He isotopes in arsenopyrite. Geology, 35: 795-798. doi: 10.1130/G23521A.1 [25] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol., 25(4): 956-983. doi: 10.1093/petrology/25.4.956 [26] Pearce, J.A., Peate, D.W., 1995. Tectonic implications of the composition of volcanic arc magmas. Annu. Rev. Earth Planet. Sci. Lett., 23: 251-285. doi: 10.1146/annurev.ea.23.050195.001343 [27] Petford, N., Atherton, M., 1996. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca batholith, Peru. J. Petrol., 37: 1491-1521. doi: 10.1093/petrology/37.6.1491 [28] Rapp, R.P., Watson, E.B., 1995. Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crust-mantle recycling. J. Petrol., 36(4): 891-931. doi: 10.1093/petrology/36.4.891 [29] Rapp, R.P., Watson, E.B., Miller, C.F., 1991. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Res., 51(1-4): 1-25. doi: 10.1016/0301-9268(91)90092-O [30] Sen, C., Dunn, T., 1994. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites. Contrib. Mineral. Petrol., 117(4): 394-409. doi: 10.1007/BF00307273 [31] Skjerlie, K.P., 1992. Petrogenesis and significance of Late Caledonian granitoid magmatism in western Norway. Contrib. Mineral. Petrol., 110: 473-487. doi: 10.1007/BF00344082 [32] Stevens, G., Clemens, J.D., Droop, G.T.R., 1997. Melt production during granulite-facies anatexis: experimental data from 'primitive' metasedimentary protoliths. Contrib. Mineral. Petrol., 128(4): 352-370. doi: 10.1007/s004100050314 [33] Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J., eds., Magmatism in the ocean basins. Geological Society of London, Special Publication, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 [34] Tan, J., Wei, J.H., Li, S.R., et al., 2008. Geochemical characteristics and tectonic significance of Kunlunguan A-type granite, Guangxi. Earth Science—Journal of China University of Geosciences, 33(6): 743-754 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.090 [35] Tang, G.J., Wang, Q., Zhao, Z.H., et al., 2009. Geochronology and geochemistry of the ore-bearing porphyries in the Baogutu area (western Junggar): petrogenesis and their implications for tectonics and Cu-Au mineralization. Earth Science—Journal of China University of Geosciences, 34(1): 56-74 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.007 [36] Wang, B.Y., Lang, Z.J., Li, X.D., et al., 1994. Integrated study of geological section, West Tianshan, China. Science Press, Beijing, 158-159 (in Chinese). [37] Whalen, J.B., Currie, K.L., Chappell, B.W., 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol., 95(4): 407-419. doi: 10.1007/BF00402202 [38] Wilde, A.R., Layer, P., Mernach, T., et al., 2001. The giant Muruntau gold deposit: geologic, geochronologic, and fluid inclusion constraints on ore genesis. Econ. Geol., 96(3): 633-644. doi: 10.2113/96.3.633 [39] Windley, B.F., Allen, M.B., Zhang, C., et al., 1990. Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan range, Central Asia. Geology, 18(2): 128-131. doi:10.1130/0091-7613(1990) 018<0128 [40] Winther, K.T., 1996. An experimentally based model for the origin of tonalitic and trondhjemitic melts. Chem. Geol., 127: 43-59. doi: 10.1016/0009-2541(95)00087-9 [41] Wolf, M.B., Wyllie, P.J., 1994. Dehydration-melting of amphibole at 10 kbar: the effects of temperature and time. Contrib. Mineral. Petrol., 115: 369-383. doi: 10.1007/BF00320972 [42] Wu, F.Y., Jahn, B.M., Wilde, S., et al., 2000. Phanerozoic crustal growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China. Tectonophysics, 328(1-2): 89-113. doi: 10.1016/S0040-1951(00)00179-7 [43] Xiao, W.J., Han, C.M., Yuan, C., et al., 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of northern Xinjiang, NW China: implications for the tectonic evolution of Central Asia. Journal of Asian Earth Sciences, 32(2-4): 102-117. doi: 10.1016/j.jseaes.2007.10.008 [44] Xiao, W.J., Zhang, L.C., Qin, K.Z., et al., 2004. Paleozoic accretionary and collisional tectonics of the eastern Tianshan (China): implications for the continental growth of Central Asia. American Journal of Science, 304: 370-395. doi: 10.2475/ajs.304.4.370 [45] Xiao, X.C., Tang, Y.Q., Li, J.Y., et al., 1992. Geotectonics of North Xinjiang and vicinity adjacent region. Geological Publishing House, Beijing, 122-123 (in Chinese). [46] Xu, X.Y., Ma, Z.P., Xia, Z.C., et al., 2005. Discussion of the sources and characteristics on Sr, Nd, Pb isotopes of the Carboniferous to Permian post-collision granties from Tianshan. Northwestern Geology, 38(2): 1-18 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBDI200502001.htm [47] Yang, F.Q., Wang, L.B., Ye, J.H., et al., 2001. Zircon U-Pb ages of granites in the Huoshi Bulak area, Xinjiang. Regional Geology of China, 20(3): 267-273 (in Chinese with English abstract). [48] Zhang, L.F., Ai, Y.L., Rubatto, D., et al., 2005. Triassic collision of western Tianshan orogenic belt, China: evidence from SHRIMP Y-Pb dating zircons from UHP eclogitic rocks. 7th International Eclogite Conference (abstract), Seggau, Austria, 173. doi: 10.1016/j.lithos.2006.09.012 [49] Zhang, L.F., Ai, Y.L., Li, Q., et al., 2005. The formation and tectonic evolution of U-HP metamorphic belt in southwestern Tianshan, Xinjiang. Acta Petrologica Sinica, 21(4): 1029-1038 (in Chinese with English abstract). [50] Zhang, Z.C., Yan, S.H., Chen, B.L., et al., 2006. SHRIMP zircon U-Pb dating for subduction-related granitic rocks in the northern part of East Junggar, Xinjiang. Chinese Science Bulletin, 51: 952-962. doi: 10.1007/s11434-008-0952-7 [51] Zhao, R.F., Yang, J.G., Wang, M.C., et al., 2002. The study of metallogenic geologic setting and prospecting potential evaluation in southwestern Tianshan mountains. Northwestern Geology, 35(4): 101-121 (in Chinese with English abstract). http://www.researchgate.net/publication/285360170_The_study_of_metallogenic_geologic_setting_and_prospecting_potential_evaluation_in_Southwestern_Tianshan_mountains [52] Zhu, Y.F., 2007. Indosinian movement and metallogeny in Xinjiang, China. Geological Bulletin of China, 26(5): 510-519 (in Chinese with English abstract). [53] Zhu, Z.X., Li, J.Y., Dong, L.H., et al., 2008. The age determination of Late Carboniferous intrusions in Mangqisu region and its constraints to the closure of oceanic basin in South Tianshan, Xinjiang. Acta Petrologica Sinica, 24(12): 2761-2766 (in Chinese). http://www.oalib.com/paper/1472525 [54] 陈文, 张彦, 秦克章, 等, 2007. 新疆东天山剪切带型金矿床时代研究. 岩石学报, 23(8): 2007-2016. doi: 10.3969/j.issn.1000-0569.2007.08.021 [55] 邓晋福, 罗照华, 苏尚国, 等, 2004. 岩石成因、构造环境与成矿作用. 北京: 地质出版社, 42-46. [56] 杜杨松, 秦新龙, 李铉具, 2004. 安徽铜陵地区中生代幔源岩浆底侵作用——来自矿物巨晶和岩石包体的证据. 岩石矿物学杂志, 23(2): 109-116. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200402001.htm [57] 高俊, 何国琦, 李茂松, 1997. 西天山造山带的古生代造山过程. 地球科学——中国地质大学学报, 22(1): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX701.004.htm [58] 高俊, 龙灵利, 钱青, 等, 2006. 南天山: 晚古生代还是三叠纪碰撞造山带?岩石学报, 22(5): 1049-1061. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605001.htm [59] 黄河, 张东阳, 张招崇, 等, 2010. 南天山川乌鲁碱性杂岩体的岩石学和地球化学特征及其岩石成因. 岩石学报, 26(3): 947-962. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201003024.htm [60] 姜常义, 穆艳梅, 白开寅, 等, 1999. 南天山花岗岩类的年代学、岩石学、地球化学及其构造环境. 岩石学报, 15(2): 298-308. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB902.017.htm [61] 李华芹, 谢才富, 常海亮, 等, 1998. 新疆北部有色贵金属矿床成矿作用年代学. 北京: 地质出版社, 4-9. [62] 李曰俊, 宋文杰, 买光荣, 等, 2001. 库车和北塔里木前陆盆地与南天山造山带的藕合关系. 新疆石油地质, 22(5): 376-381. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200105003.htm [63] 王宝瑜, 郎智君, 李向东, 等, 1994. 中国天山西段地质剖面综合研究. 北京: 科学出版社, 158-159. [64] 谭俊, 魏俊浩, 李水如, 等, 2008. 广西昆仑关A型花岗岩地球化学特征及构造意义. 地球科学——中国地质大学学报, 33(6): 743-754. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200806001.htm [65] 唐功建, 王强, 赵振华, 等, 2009. 西准噶尔包古图成矿斑岩年代学与地球化学: 岩石成因与构造、铜金成矿意义. 地球科学——中国地质大学学报, 34(1): 56-74. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200901008.htm [66] 肖序常, 汤耀庆, 李锦轶, 等, 1992. 新疆北部及邻区大地构造. 北京: 地质出版社, 122-123. [67] 徐学义, 马中平, 夏祖春, 等, 2005. 天山石炭-二叠纪后碰撞花岗岩的Nd、Sr、Pb同位素源区示踪. 西北地质, 38(2): 1-18. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200502001.htm [68] 杨富全, 王立本, 叶锦华, 等, 2001. 新疆霍什布拉克地区花岗岩锆石U-Pb年龄. 中国区域地质, 20(3): 267-273. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200103007.htm [69] 张立飞, 艾永亮, 李强, 等, 2005. 新疆西南天山超高压变质带的形成与演化. 岩石学报, 21(4): 1029-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200504000.htm [70] 赵仁夫, 杨建国, 王满仓, 等, 2002. 西南天山成矿地质背景研究及找矿潜力评价. 西北地质, 35(4): 101-121. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200204008.htm [71] 朱永峰, 2007. 新疆的印支运动与成矿. 地质通报, 26(5): 510-519. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200705002.htm [72] 朱志新, 李锦轶, 董连慧, 等, 2008. 新疆南天山盲起苏晚石炭世侵入岩的确定及其对南天山洋盆闭合时限的限定. 岩石学报, 24(12): 2761-2766. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200812011.htm