Rapid Paleoclimate Changes during MIS3a Reflected by Lacustrine Deposits of Dujiangyan in the Eastern Margin of Qinghai-Tibet Plateau
-
摘要: 深海氧同位素第3阶段晚期(MIS3a)是青藏高原较为特殊的暖湿时期, 为了解这一时期高原东缘的气候变化细节, 利用AMS14C定年和粒度、总有机碳、正构烷烃等环境代用指标提取了四川都江堰湖相沉积剖面的相应记录.经过校正后的日历年龄显示此剖面沉积于43.6~34.6 kaBP期间, 记录了千年尺度的D-O旋回事件, 其分布时段分别为: DO11(43.6~41.8 kaBP), DO10(41.8~39.2 kaBP), DO9(39.2~37.7 kaBP), DO8(37.7~35.5 kaBP), DO7(35.5 kaBP~未见顶).该剖面总有机碳曲线与南京葫芦洞石笋和格陵兰冰心(GRIP)氧同位素曲线的对比表明, 该区域气候记录对全球高纬地区的冰量变化和亚洲季风演化具有响应; 而中纬度太阳辐射岁差对该区域气候波动的控制作用较强导致了细节上存在差异.Abstract: The later phase of marine isotope stage 3 (i.e. MIS3a) on Qinghai-Tibet plateau was characterized by its special warm-humid climate. The constructed AMS14C calendar age-depth model, the component of n-alkanes, together with the grain size and total organic carbon (TOC) of lacustrine sediments in Dujiangyan S1 Section are used to elucidate the paleoclimate changes. The results indicate that rapid fluctuation on millennial scale was the main characteristic in the eastern margin of Qinghai-Tibet plateau during 43.6—34.6 kaBP. The Dansgaard-Oeschger events 11—7 can be reflected by these proxies, especially TOC. Comparison between TOC curve and oxygen isotope record from Hulu Cave and Greenland GRIP indicates that paleoclimate records in Dujiangyan respond to ice volume change in the high-latitude area and Asia monsoon oscillation. But the difference was shown because the influence of insolation values precession was strong in this area.
-
Key words:
- lacustrine sediment /
- paleoclimate /
- Dujiangyan /
- Dansgaard-Oeschger oscillation
-
图 4 都江堰S1剖面TOC与南京葫芦洞石笋和GRIP氧同位素曲线的对比
图中S1剖面与葫芦洞石笋采用同一时间标尺,GRIP冰心为另一时间标尺;数字代表D-O旋回,H4代表Heinrich事件,南京葫芦洞氧同位素取自MSD序列(Wang et al., 2001);GRIP氧同位素数据来自http://www.ngdc.noaa.gov/paleo/icecore/greenland/summit/index.html;33°N辐射强度为夏季6~8月数据(Berger and Loutre, 1991)
Fig. 4. Comparison of TOC content in the S1 Section, δ18O of Hulu cave stalagmites in Nanjing and Greenland GRIP versus time
表 1 都江堰湖相S1剖面AMS14C测年及日历年龄校正
Table 1. AMS14C dating and calendar calibration of the lacustrine S1 Section in Dujiangyan City
实验室编号 样品编号 深度
(cm)AMS14C年龄
(aBP)日历校正年龄
(aBP,距1 950 a)BA07695 S1-1-1 1 29 780±140 34 611±140 BA07696 S1-1-121 121 33 040±195 37 824±567 BA07698 S1-2-36 313 39 420±290 43 565±321 表 2 都江堰S1剖面正构烷烃含量、主峰碳和分子组成参数
Table 2. n-alkane's concentrations, main peaks and characteristic molecular proxies of the lacustrine S1 Section in Dujiangyan City
样品号 深度(cm) 年龄(kaBP) 总量① (μg/g) 主峰碳 CPI1② CPI2③ Paq④ TAR⑤ C31/(C27+29) 1S1-1-1 1 34.61 0.33 C23, C17 1.75 1.99 0.65 1.13 0.286 S1-1-10 10 34.85 0.08 C17, C23 2.03 2.02 0.66 0.80 0.300 S1-1-20 20 35.12 0.13 C23, C17 1.93 1.79 0.68 1.14 0.276 S1-1-30 30 35.39 0.11 C23 1.58 1.90 0.62 2.08 0.347 S1-1-40 40 35.65 0.22 C23 1.51 1.93 0.60 1.95 0.347 S1-1-50 50 35.92 0.14 C23 1.48 2.07 0.55 2.51 0.369 S1-1-60 60 36.19 0.23 C23 1.54 2.02 0.58 2.24 0.387 S1-1-80 80 36.72 0.13 C29 1.58 2.55 0.48 3.48 0.364 S1-1-90 90 36.99 0.28 C23, C17 1.74 1.63 0.71 1.04 0.258 S1-1-100 100 37.26 0.34 C17 1.80 1.76 0.64 0.73 0.288 S1-1-110 110 37.53 0.38 C17 2.36 2.15 0.55 0.94 0.331 S1-1-120 120 37.80 0.23 C17 1.82 2.19 0.52 1.25 0.351 S1-1-130 130 38.09 0.23 C29 1.50 2.34 0.51 2.77 0.350 S1-1-140 140 38.39 0.07 C23, C29 1.91 1.83 0.59 3.92 0.355 S1-1-150 150 38.69 0.31 C17, C23 1.56 1.77 0.64 0.96 0.296 S1-1-160 160 39.00 0.34 C17, C23 1.81 1.62 0.73 0.64 0.249 S1-1-170 170 39.30 0.25 C23, C29 1.51 2.04 0.58 1.65 0.300 S1-1-180 180 39.60 0.15 C29 1.36 2.41 0.47 3.23 0.357 S1-1-190 190 39.90 0.25 C29 1.43 2.47 0.44 2.77 0.398 S1-1-200 200 40.20 0.29 C29 1.70 2.12 0.51 1.97 0.425 S1-1-210 210 40.50 0.27 C29 1.52 1.70 0.63 1.41 0.324 S1-1-220 220 40.80 0.24 C29 1.48 2.30 0.50 2.24 0.383 S1-1-230 230 41.10 0.19 C29 1.53 2.47 0.49 2.80 0.428 S1-1-240 240 41.40 0.29 C27 1.71 2.79 0.46 1.69 0.352 S1-2-10 260 42.00 0.06 C31 0.48 3.95 0.28 13.47 0.657 S1-2-20 280 42.60 0.17 C27 1.63 2.90 0.45 2.25 0.325 S1-2-30 300 43.20 0.10 C27 1.54 2.56 0.49 3.07 0.376 S1-2-36 312 43.57 0.16 C27 1.75 2.29 0.57 1.82 0.318 ①烷烃总量=∑C15-31;②CPI1=(∑C15-21奇/∑C14-20偶+∑C15-21奇/∑C16-22偶)/2;③CPI2=(∑C23-33奇/∑C22-32偶+ ∑C23-33奇/∑C24-34偶)/2;④P aq=(C23+C25)/(C23+C25+C29+C31);⑤TAR=(C27+C29+C31)/(C15+C17+C19). -
[1] Berger, A.L., Loutre, M.F., 1991. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews, 10(4): 297-317. doi: 10.1016/0277-3791(91)90033-Q [2] Brassell, S.C., Eglinton, G., Marlowe, I.T., et al., 1986. Molecular stratigraphy: a new tool for climatic assessment. Nature, 320: 129-133. doi: 10.1038/320129a0 [3] Bryant, E., 2004. Climate process and change, Translated by Liu, D.S. . Science Press, Beijing, 91-94 (in Chinese). [4] Chen, J.A., Wan, G.J., Zhang, F., et al., 2003. Environmental records of lacustrine sediments in different time scales: sediment grain size as an example. Science in China (Ser. D), 47(10): 954-960. doi: 10.1360/03yd0160 [5] Chen, Y.M., Rao, Z.G., Zhang, J.W., et al., 2004. Comparatives study of MIS3 climatic features record in Malan loess in the western part of the loess plateau and global records. Quaternary Sciences, 24 (3): 359-365 (in Chinese with English abstract). http://www.researchgate.net/publication/292814594_Comparative_study_of_MIS3_climatic_features_record_in_Malan_Loess_in_the_western_part_of_the_Loess_Plateau_and_global_records [6] Chen, Y.S., Wei, H.C., Li, S.P., et al., 2009. Sedimentary characteristics and environment of the ancient dammed lake in Rimaqu basin in the Yellow River source area. Plateau Earthquake Research, 21(1): 32-35(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GYDZ200901004.htm [7] Cranwell, P.A., Eglinton, G., Robinson, N., 1987. Lipids of aquatic organisms as potential contributors to lacustrine sediments—Ⅱ. Organic Geochemistry, 11(6): 513-527. doi: 10.1016/0146-6380(87) [8] Dansgaard, W., Johnsen, S.J., Clausen, H.B., et al., 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364: 218-220. doi: 10.1038/364218a0 [9] Duan, L.P., Wang, L.S., Yang, L.Z., et al., 2002. The ancient climatic evolution characteristic reflected by carbon and oxygen isotopes of carbonate in the ancient barrier lacustrine deposits, Diexi, Minjiang River. The Chinese Journal of Geological Hazard and Control, 13(2): 91-96 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGDH200202018.htm [10] Eglinton, G., Hamilton, R.J., 1967. Leaf epicuticular waxes. Science, 156(3780): 1322-1335. doi: 10.1126/science.156.3780.1322 [11] Ficken, K.J., Li, B., Swain, D.L., et al., 2000. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Organic Geochemistry, 31(7-8): 745-749. doi: 10.1016/S0146-6380(00)00081-4 [12] Grootes, P.M., Stuiver, M., White, J.W.C., et al., 1993. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature, 366: 552-554. doi: 10.1038/366552a0 [13] Imbrie, J., Hays, J.D., Martinson, D.S., et al., 1984. The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record. In: Berger, A., Imbrie, J., Hays, H., et al., eds, Milankovitch and climate. Reidel Publish Company, Dordrecht (Holland), 269-305. [14] Johnsen, S.J., Dahl-Jensen, D., Gundestrup, N., et al., 2001. Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: camp century, Dye23, GRIP, GISP2, Renland and North GRIP. Journal of Quaternary Science, 16(4): 299-307. doi: 10.1002/jqs.622 [15] Jouzel, J., Genthon, C., Lorius, C., et al., 1987. Vostok ice core: a continuous isotope temperature record over the last climatic cycle (160 000 years). Nature, 329: 403-408. doi: 10.1038/329403a0 [16] Krishnamurthy, R.V., Bhattacharya, S.K., Kusumgar, S., 1986. Palaeoclimatic changes deduced from 13C/12C and C/N ratios of Karewa Lake sediments, India. Nature, 323: 150-152. doi: 10.1038/323150a0 [17] Li, Y.M., Liu, D.S., Wu, W.X., et al., 2003. Paleoenvironment in Chinese loess plateau during MIS3: evidence from Malan loess. Quaternary Sciences, 23(1): 69-76 (in Chinese with English abstract). http://www.dsjyj.com.cn/EN/abstract/abstract9234.shtml [18] Liu, D.B., Wang, Y.J., Chen, S.T., et al., 2008. Sub-Dansgaard-Oeschger events of East Asian monsoon and their global significance. Quaternary Sciences, 28(1): 169-176 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DSJJ200801020&dbcode=CJFD&year=2008&dflag=pdfdown [19] Liu, X.Q., Shen, J., Wang, S.M., et al., 2002. A 16 000-year pollen record of Qinghai Lake and its paleoclimate and paleoenvironment. Chinese Science Bulletin, 47(22): 1931-1936. doi: 10.1360/02tb9421 [20] Liu, Y.P., Montgomery, D.R., Hallet, B., et al., 2006. Quaternary glacier blocking events at the entrance of Yarlung Zangbo Canyon, Southeast Tibet. Quaternary Sciences, 26 (1): 52-62 (in Chinese with English abstract). [21] Martinson, D.G., Pisias, N.G., Hays, J.D., et al., 1987. Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300 000-year chronostratigraphy. Quternary Research, 27(1): 1-29. doi: 10.1016/0033-5894(87) [22] Meyers, P.A., 2003. Applications of organic geochemistry to paleolimonological reconstructions: a summary of examples from the Laurentian Greak Lakes. Organic Geochemistry, 34(2): 261-289. doi: 10.1016/S0146-6380(02)00168-7 [23] Reimer, P.J., Baillie, M.G.L., Bard, E., et al., 2009. Intcal09 and marine09 radiocarbon age calibration curves, 0 to 50 000 years calBP. Radiocarbon, 51(4): 1111-1150. doi: 10.1017/S0033822200034202 [24] Schefuβ, E., Ratmeyer, V., Stuut, J.B.W., et al., 2003. Carbon isotope analyses of n-alkanes in dust from the lower atmosphere over the central eastern Atlantic. Geochimica et Cosmochimica Acta, 67(10): 1757-1767. doi: 10.1016/S0016-7037(02)01414-X [25] Shen, C.M., Tang, L.Y., Wang, S.M., 1996. Vegetation and climate during the last 250 000 years in Zoige region. Acta Micropalaeontologica Sinica, 13(4): 373-385 (in Chinese with English abstract). http://europepmc.org/abstract/CBA/297003 [26] Shen, J., Liu, X.Q., Matsumoto, R., et al., 2005. A high-resolution climatic change since the Late Glacial age inferred from multi-proxy of sediments in Qinghai Lake. Science in China (Ser. D), 48(6): 742-751. doi: 10.1360/03yd0148 [27] Shi, Y.F., Yu, G., 2003. Warm-humid climate and transgressions during 40-30 ka BP and their potential mechanisms. Quaternary Sciences, 23 (1): 1-11 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200301000.htm [28] Wang, J., Zhou, S.Z., Tang, S.L., et al., 2007. The sequence of Quaternary glaciations around the Tanggula pass. Journal of Glaciology and Geocryology, 29(1): 149-155(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BCDT200701022.htm [29] Wang. Y.F., Wang, S.M., Xue, B., et al., 1995. Sedimentological evidence of the piracy of fossil Zoige Lake by the Yellow River. Chinese Science Bulletin, 40(18): 1539. http://qikan.cqvip.com/Qikan/Article/Detail?id=3001223930 [30] Wang, Y.J., Cheng, H., Edwards, R.L., et al., 2001. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science, 294(5550): 2345-2348. doi: 10.1126/science.1064618 [31] Wang, Y.J., Wu, J.Y., Wu, J.Q., et al., 2001. Correlation between high-resolution climate records from a Nanjing stalagmite and GRIP ice core during the last glaciations. Science in China (Ser. D), 44(1): 14-23. doi: 10.1007/BF02906881 [32] Wu, Y.H., Lücke, A., Wünnemann, B., et al., 2007. Holocene climate change in the central Tibetan plateau inferred by lacustrine sediment geochemical records. Science in China (Ser. D), 50(10): 1548-1555. doi: 10.1007/s11430-007-0113-x [33] Xue, B., Wang, S.M., Wu, J.L., et al., 1999. Palaeoclimate of northeastern Qinghai-Xizang (Tibet) plateau since last interglaciation: a case study from core RM of the Zoige basin. Oceanologia et Limnologia Sinica, 30(3): 327-332 (in Chinese with English abstract). [34] Yang, W.G., Zhu, L.D., Zheng, H.B., et al., 2008. Evolution of a dammed paleolake in the Quaternary Diexi basin in the upper reaches of the Minjiang River, Sichuan, China. Geological Bulletin of China, 27(5): 605-610 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200805004.htm [35] Yao, T.D., Thompson, L.G., Shi, Y.F., et al., 1997. Climate variation since the last interglaciation recorded in the Guliya ice core. Science in China (Ser. D), 40(6): 662-668. doi: 10.1007/BF02877697 [36] Yu, G., Feng, G., Shi, Y.F., et al., 2007. Late marine isotope stage 3 palaeoclimate for East Asia: a data-model comparison. Palaeogeography, Palaeoclimatology, Palaeoecology, 250(1-4): 167-183. doi: 10.1016/j.palaeo.2007.03.010 [37] Zhang, K.X., Wang, G.C., Ji, J.L., et al., 2010. Paleogene-Neogene stratigraphic realm and sedimentary sequence of the Qinghai-Tibet plateau and their response to uplift of the plateau. Science in China (Earth Sciences), 53(9): 1271-1294. doi: 10.1007/s11430-010-4048-2 [38] Zhang, Y., Zhu, L.D., Yang, W.G., et al., 2009. High resolution rapid climate change records of lacustrine deposits of Diexi basin in the eastern margin of Qinghai-Tibet plateau, 40-30 kaBP. Earth Science Frontiers, 16(5): 91-98 (in Chinese with English abstract). doi: 10.1016/S1872-5791(08)60106-2 [39] Zhang, Y.S., Zhao, X.T., 2008. Sedimentary characteristics of the quatenery dammed lake in the Lancang River near the Dêqên-Gushui area, Yunnan, and its environmental significance. Acta Geologica Sinica, 82(2): 262-268 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200802011.htm [40] Zhang, Z.Y., Yu, Q.W., Zhang, K.X., et al., 2003. Geomorphological evolution of Quaternary river from Upper Yellow River and geomorphological evolution investigation for 1∶250 000 scale geological mapping in Qinghai-Tibet plateau. Earth Science—Journal of China University of Geosciences, 28(6): 621-633 (in Chinese with English Abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200306006.htm [41] Zhao, J.D., Zhou, S.Z., Liu, S.Y., et al., 2007. A preliminary study of the glacier advance in MIS3b in the western regions of China. Journal of Glaciology and Geocryology, 29(2): 233-241 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BCDT200702009.htm [42] Zhou, W.J., Head, M.J., Deng, L., 2001. Climate changes in northern China since the Late Pleistocene and its response to global change. Quaternary International, 83-85: 285-292. doi: 10.1016/S1040-6182(01)00046-5 [43] Zhu, L.P., Wang, J.B., Lin, X., et al., 2007. Environmental changes reflected by core sediments since 8.4 ka in Nam Co, central Tibet of China. Quaternary Sciences, 27(4): 588-597 (in Chinese with English abstract). [44] 布赖恩特, E., 2004. 中国科学院研究生教学丛书: 气候过程和气候变化, 刘东生译. 北京: 科学出版社, 91-94. [45] 陈敬安, 万国江, 张峰, 等, 2003. 不同时间尺度下的湖泊沉积物环境记录——以沉积物粒度为例. 中国科学(D辑), 33(6): 563-568. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200306009.htm [46] 陈一萌, 饶志国, 张家武, 等, 2004. 中国黄土高原西部马兰黄土记录的MIS3气候特征与全球气候记录的对比研究. 第四纪研究, 24(3): 359-365. doi: 10.3321/j.issn:1001-7410.2004.03.017 [47] 陈有顺, 魏海成, 李善平, 等, 2009. 黄河源区日玛曲流域古堰塞湖的沉积特征及环境意义. 高原地震, 21(1): 32-35. doi: 10.3969/j.issn.1005-586X.2009.01.005 [48] 段丽萍, 王兰生, 杨立铮, 等, 2002. 岷江叠溪古堰塞湖沉积物碳酸盐碳氧同位素记录所揭示的古气候演化特征. 中国地质灾害与防治学报, 13(2): 91-96. doi: 10.3969/j.issn.1003-8035.2002.02.019 [49] 李玉梅, 刘东生, 吴文祥, 等, 2003. 黄土高原马兰黄土记录的MIS3温湿气候. 第四纪研究, 23(1): 69-76. doi: 10.3321/j.issn:1001-7410.2003.01.008 [50] 刘殿兵, 汪永进, 陈仕涛, 等, 2008. 东亚季风MIS3早期DO事件的亚旋回及全球意义. 第四纪研究, 28(1): 169-176. doi: 10.3321/j.issn:1001-7410.2008.01.019 [51] 刘兴起, 沈吉, 王苏民, 等, 2002. 青海湖16 ka以来的花粉记录及古气候古环境演变. 科学通报, 47(17): 1351-1355. doi: 10.3321/j.issn:0023-074X.2002.17.016 [52] 刘宇平, Montgamery, D.R., Hallet, B., 等, 2006. 西藏东南雅鲁藏布大峡谷入口处第四纪多次冰川阻江事件. 第四纪研究, 26(1): 52-62. doi: 10.3321/j.issn:1001-7410.2006.01.007 [53] 沈才明, 唐领余, 王苏民, 1996. 若尔盖地区25万年以来的植被与气候. 微体古生物学报, 13(4): 373-385. https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT604.005.htm [54] 沈吉, 刘兴起, Matsumoto, R., 等, 2004. 晚冰期以来青海湖沉积物多指标高分辨率的古气候演化. 中国科学(D辑), 34(6): 582-589. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200406010.htm [55] 施雅风, 于革, 2003.40~30 kaBP中国暖湿气候和海侵的特征与成因探讨. 第四纪研究, 23(1) : 1-11. doi: 10.3321/j.issn:1001-7410.2003.01.001 [56] 王云飞, 王苏民, 薛滨, 等, 1995. 黄河袭夺若尔盖古湖时代的沉积学依据. 科学通报, 40(8): 723-725. doi: 10.3321/j.issn:0023-074X.1995.08.014 [57] 汪永进, 吴江滢, 吴金全, 等, 2000. 末次冰期南京石笋高分辨率气候记录与GRIP冰心对比. 中国科学(D辑), 30(5): 533-539. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200005011.htm [58] 王杰, 周尚哲, 唐述林, 等, 2007. 唐古拉山垭口地区的第四纪冰川测年新研究. 冰川冻土, 29(1): 149-155. doi: 10.3969/j.issn.1000-0240.2007.01.023 [59] 吴艳宏, Lücke, A., Wünnemann, B., 等, 2007. 青藏高原中部全新世气候变化的湖泊沉积地球化学记录. 中国科学(D辑), 37(9): 1185-1191. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200709006.htm [60] 薛滨, 王苏民, 吴敬禄, 等, 1999. 青藏高原东北部末次间冰期以来的古气候——以若尔盖盆地RM孔分析为例. 海洋与湖沼, 30(3): 327-332. doi: 10.3321/j.issn:0029-814X.1999.03.017 [61] 杨文光, 朱利东, 郑洪波, 等, 2008. 岷江上游第四纪叠溪古堰塞湖的演化. 地质通报, 27(5): 605-610. doi: 10.3969/j.issn.1671-2552.2008.05.003 [62] 姚檀栋, Thompson, L.G., 施雅风, 等, 1997. 古里雅冰心中末次间冰期以来气候变化记录研究. 中国科学(D辑), 27(5): 447-452. doi: 10.3321/j.issn:1006-9267.1997.05.006 [63] 张克信, 王国灿, 陈奋宁, 等, 2007. 青藏高原古近纪-新近纪隆升与沉积盆地分布耦合. 地球科学——中国地质大学学报, 32(5): 583-597. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200705002.htm [64] 张岩, 朱利东, 杨文光, 等, 2009. 青藏高原东缘叠溪海盆地40~30 kaBP高分辨率快速气候变化记录. 地学前缘, 16(5): 91-98. doi: 10.3321/j.issn:1005-2321.2009.05.009 [65] 张永双, 赵希涛, 2008. 澜沧江云南德钦古水一带第四纪堰塞湖的沉积特征及其环境意义. 地质学报, 82(2): 262-268. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200802011.htm [66] 张智勇, 于庆文, 张克信, 等, 2003. 黄河上游第四纪河流地貌演化——兼论青藏高原1∶25万新生代地质填图地貌演化调查. 地球科学——中国地质大学学报, 28(6): 621-633. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200306006.htm [67] 赵井东, 周尚哲, 刘时银, 等, 2007. 中国西部山岳冰川MIS3b冰进的初步探讨. 冰川冻土, 29(2): 233-241. doi: 10.3969/j.issn.1000-0240.2007.02.010 [68] 朱立平, 王君波, 林晓, 等, 2007. 西藏纳木错深水湖芯反映的8.4 ka以来气候环境变化. 第四纪研究, 27(4): 588-597. doi: 10.3321/j.issn:1001-7410.2007.04.015