Sedimentary Sequences and Paleoclimate of Late Pleistocene in Xunhua Basin, Qinghai Province
-
摘要: 河流阶地作为河谷中常见地貌, 其堆积物特征对气候变化过程研究具有重要的意义.通过对循化黄河Ⅲ级阶地剖面沉积特征、粒度、磁化率、孢粉以及光释光测年的研究, 初步厘定循化黄河Ⅲ级阶地形成时代为75 ka.循化盆地晚更新世气候演化可以大致划分为6个阶段: 120~114 ka, 气候暖湿; 114~105 ka, 气候较为干冷; 105~98 ka, 气候较暖湿; 98~85 ka, 气候转为温凉; 85~75 ka, 气候暖湿; 75~63 ka, 气候干冷.这6个阶段分别与MIS5e-4段相对应.Abstract: Sedimentological analyses of the third terrace along the banks of the Yellow River in Xunhua basin have yielded results that have more than regional significance. They are concerned with the reaction of rivers to climatic changes in the Pleistocene. Based on the field investigations, granularity, magnetic susceptibility, palynological records and optically stimulated luminescence (OSL) dating, the age of the third terrace was revealed. It shows that the Yellow River incised during the transition from interglacial to glacial. Evidences show that the paleoclimate and environment in Xunhua basin during the Late Pleistocene can be roughly divided into six stages: (1) 120—114 ka, the climate was warm and moist; (2) 114—105 ka, the climate turned cool and dry; (3) 105—98 ka, the climate was relatively warm and humid; (4) 98-85 ka, the climate turned cool and temperature; (5) 85—75 ka, the climate was warm and humid; (6) 75—63 ka, the climate was cold and dry, which can be compared with high-resolution ice core and marine oxygen isotope climate series.
-
Key words:
- river terrace /
- granularity /
- magnetic susceptibility /
- environment evolution /
- Xunhua basin
-
图 1 研究区交通位置及地质简图(据中国地质大学地质调查研究院(2006) 修改①)
1.全新统;2.上更新统;3.中更新统;4.上新统积石组;5.中上新统临夏组;6.渐-中新统咸水河组;7.渐-中新统他拉组;8.下白垩统河口群一组;9.下白垩统河口群二组;10.下三叠统江里沟组;11.上寒武系六道沟组;12.元古界化隆岩群;13.早奥陶世灰绿色中粒石英闪长岩;14.奥陶纪灰绿色石英闪长岩;15.三级阶地;16.逆断层;17.正断层;18.实测地质界线;19.实测角度不整合界限;20.侵入界限;21.剖面位置
Fig. 1. The traffic location and geological map of the study area
图 2 青海循化盆地Ⅲ级阶地剖面综合柱状图
岩性岩相柱中:1.泥,2.粉砂,3.细砂,4.中砂,5.粗砂,6.细砾,7.巨砾;典型露头照片:1.Ⅲ级阶地⑦层河床滞留沉积,砾石具叠瓦状构造;2.Ⅲ级阶地⑥层曲流沙坝沉积,发育波状交错层理;3.Ⅲ级阶地⑤层天然堤沉积,砂泥互层,发育水平层理;4.Ⅲ级阶地④层曲流沙坝沉积,多个正粒序旋回组成,发育平行层理、泥裂;5.Ⅲ级阶地③层天然堤沉积,砂泥互层;6.Ⅲ级阶地②层曲流沙坝沉积,正粒序旋回组成,砾石含量较多,砾石具叠瓦状构造,发育水平层理;7.Ⅲ级阶地①层次生黄土沉积,块状;图例:1.砾岩,2.粗砂岩,3.细砂岩,4.粉砂岩,5.泥岩,6.黄土,7.叠瓦状构造,8.平行层理,9.爬升层理,10.正粒序层理,11.泥裂,12.水平层理,13.楔状交错层理,14.板状交错层理,15.含砾砂岩,16.泥质粉砂
Fig. 2. Stratigraphic profile of the third terrace in Xuhua basin, Qinghai Province
图 4 循化盆地黄河Ⅲ级阶地沉积物磁化率与粒度组分对比(图例同图 2)
Fig. 4. Comparison diagram of magnetic susceptibility and granularity for the third terrace of the Yellow River in Xunhua basin
表 1 循化黄河Ⅲ级阶地光释光测年结果和参数
Table 1. Analytical results of OSL and their parameters of sediments from the third terrace of the Yellow River in Xunhua basin
样品编号 野外编号 U
(‰)Th
(‰)K
(%)等效剂量
E.D (Gy)年剂量Dy
(Gy/Ka)年龄
(Ka)08G-350 S21-2-1 2.71 13.60 1.40 393.73±24.63 3.48 113.6±8.4 08G-351 S21-30-3 1.88 8.09 1.59 317.81±19.86 3.04 104.4±7.7 08G-352 S21-57-1 3.12 10.20 1.94 250.75±10.42 3.99 62.8±3.6 -
[1] Antoine, P., Lautridou, J.P., Laurent, M., 2000. Long-term fluvial archives in NW France: response of the Seine and Somme rivers to tectonic movements, climatic variations and sea-level changes. Geomorphology, 33(3-4): 183-207. doi: 10.1016/S0169-555X(99)00122-1 [2] Blum, M., 1994. Genesis and architecture of incised valley? Ⅱ sequences: a Late Quaternary example from the Colorado River, Gulf Coastal Plain of Texas. Siliciclastic Sequence Stratigraphy—Recent Developments and Applications, Vol. 58. American Association of Petroleum Geologists, Memoirs, 259-283. [3] Bridgland, D., Maddy, D., 1995. River terraces as records of Quaternary climate oscillations. Abstracts INQUA XIV, Berlin, 37. [4] Chang, H., An, Z.S., Qiang, X.K., et al., 2005. Formation of fluvial terrace and its tectonic and climate significance. Marine Geology Letters, 21(2): 8-11 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDT200502002.htm [5] Fuller, I.C., Macklin, M.G., Lewin, J., et al., 1998. River response to high-frequency climate oscillations in southern Europe over the past 200 k. y. . Geology, 26(3): 275-278. doi: 10.1130/0091-7613(1998)026<0275: RRTHFC>2.3.CO;2 [6] Hu, S.Y., Appel, E., Hoffmann, V., et al., 2002. Identification of greigite in lake sediments and its magnetic significance. Science in China (Ser. D), 45(1): 81-87. doi: 10.1007/BF02879699 [7] Kasse, C., Bohncke, S., Vandenberghe, J., 1995. Fluvial periglacial environments, climate and vegetation during the middle Weichselian with special reference to the Hengelo Interstadial. Mededelingen Rijks Geologische Dienst, 52: 387-413. http://www.researchgate.net/publication/283809614_Fluvial_periglacial_environments_climate_and_vegetation_during_the_middle_Weichselian_in_the_northern_Netherlands_with_special_reference_to_the_Hengelo_Interstadial [8] Ji, Y.P., Xia, Z.K., 2007. Comparison and primarily interpretation of magnetic susceptibilities in different sediments. Acta Geoscientica Sinica, 28(6): 541-549 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB200706005.htm [9] Li, H.M., Yang, X.Q., Hrller, F., et al., 2008. High resolution magnetostratigraphy and deposition cycles in the Nihewan basin (North China) and their significance for stone artifact dating. Quaternary Research, 69(2): 250-262. doi: 10.1016/j.yqres.2007.11.002 [10] Li, Y.L., Yang, J.C., 1997. Response of alluvial terraces to Holocene climatic changes in the Hexi Corridor basins, Gansu, China. Scientia Geographica Sinica, 17(3): 248-252 (in Chinese with English abstract). http://www.researchgate.net/publication/288942383_Response_of_alluvial_terraces_to_Holocene_climatic_changes_in_the_Hexi_Corridor_basins_Gansu_China [11] Maddy, D., Bridgland, D., Westaway, R., 2001. Uplift-driven valley incision and climate-controlled river terrace development in the Thames Valley, UK. Quaternary International, 79(1): 23-36. doi:10.1016/S1040-6182(00) 00120-8 [12] Nador, A., Lantos, M., Toth-Makk, A., et al., 2003. Milankovitch-scale multi-proxy records from fluvial sediments of the last 2.6 Ma, Pannonian basin, Hungary. Quaternary Science Reviews, 22(20): 2157-2175. doi: 10.1016/S0277-3791(03)00134-3 [13] Pan, B.T., Li, J.J., Cao, J.X., et al., 1996. Study on the geomorphic evolution and development of the Yellow River in the Hualong basin. Mountain Research, 14(3): 153-158 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SDYA603.002.htm [14] Pan, B.T., Su, H., Hu, C.S., et al., 2006. Discovery of a 1.0 Ma Yellow River terrace and redating of the 0.8 Ma Yellow River terrace in Lanzhou area. Progress in Natural Sciences, 17(2): 197-205. [15] Pan, B.T., Su, H., Liu, X.F., et al., 2007. River terraces of the Yellow River and their genesis in eastern Lanzhou basin during last 1.2 Ma. Quaternary Sciences, 27(2): 172-180 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200702001.htm [16] Shen, H.Y., Jia, Y.L., Zhang, H.M., et al., 2006. Environmental change inferred from granular size character of lacustrine sediment in Inner Mongolia Huangqihai, during 8.0-2.2 kaBP. Arid Land Geography, 29(4): 457-462 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-GHDL200604000.htm [17] Thompson, R., Oldfield, F., 1986. Environmental magnetism. Allen & Unwin, London, 1-227. [18] Vandenberghe, J., 1993. Changing fluvial processes under changing periglacial conditions. Zeitschrift für Geomorphologie, 88: 17-28. [19] Vandenberghe, J., 1995. Timescales, climate and river development. Quaternary Science Reviews, 14(6): 631-638. doi: 10.1016/0277-3791(95)00043-O [20] Wang, J., Liu, Z.C., Jiang, W.Y., et al., 1996. A relationship between susceptibility and grain-size and minerals, and their paleo-environmental implications. Acta Geographica Sinica, 51(2): 155-163 (in Chinese with English abstract). http://www.researchgate.net/publication/291858168_A_relationship_between_susceptibility_and_grain-size_and_minerals_and_their_paleo-environmental_implications [21] Wang, P., Jiang, H.C., Yuan, D.Y., et al., 2008. Stratigraphic structures and ages of the second and third fluvial terraces along the bank of Huanghe River in Lanzhou basin, western China, and their environmental implications. Quaternary Sciences, 28(4): 553-563 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200804006.htm [22] Xia, K.S., Xie, S.Y., He, D.X., 2007. Characterization of magnetic susceptibility changes of the Jiangbei conglomerate in Chongqing and its paleo-environmental implications. Yangtze River, 38 (2): 123-125 (in Chinese). [23] Yao, T.D., Shi, Y.F., Qin, D.H., et al., 1997. Climate variation since the Last Interglaciation recorded in the Guliya ice core. Science in China (Ser. D), 27(5): 447-452 (in Chinese). http://qikan.cqvip.com/Qikan/Article/Detail?id=3001014068 [24] Yang, X.Q., Li, H.M., 2002. The correlation between the content of the different grain size and magnetic susceptibility in lacustrine sediments, Nihewan basin. Acta Sedimentologica Sinica, 20(4): 675-679 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-CJXB200204023.htm [25] Yue, L.P., Lei, X.Y., Qu, H.J., 1997. The age of terrace development in the middle reaches of the Yellow River. Geological Review, 43(2): 186-192 (in Chinese with English abstract). http://www.researchgate.net/publication/313057687_The_age_of_terrace_development_in_the_middle_reaches_of_the_Yellow_River [26] Zhang, K.X., Wang, G.C., Ji, J.L., et al., 2010. Paleogene-Neogene stratigraphic realm and sedimentary sequence of the Qinghai-Tibet plateau and their response to uplift of the plateau. Science in China (Earth Sciences), 53(9): 1271-1294. doi: 10.1007/s11430-010-4048-2 [27] Zhao, Z.M., Liu, B.C., 2003. Relation between the formation of the Yellow River valley landforms from Gonghe, Qinghai to Lanzhou, Gansu and the uplifting in northeast part of Qinghai-Xizang plateau. Northwestern Geology, 36(2): 1-12 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_northwestern-geology_thesis/0201254330254.html [28] Zhou, X.H., Zhao. J.B., 2007. Climate change was indicated by the magnetic susceptibility in Gaoling Weihe River floodplain near 120 years. Journal of Soil and Water Conservation. 21(3): 196-200 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQS200703043.htm [29] 常宏, 安芷生, 强小科, 等, 2005. 河流阶地的形成及其对构造与气候的意义. 海洋地质动态, 21(2): 8-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT200502002.htm [30] 吉云平, 夏正楷, 2007. 不同类型沉积物磁化率的比较研究和初步解释. 地球学报, 28(6): 541-549. doi: 10.3321/j.issn:1006-3021.2007.06.005 [31] 李有利, 杨景春, 1997. 河西走廊平原区全新世河流阶地对气候变化的响应. 地理科学, 17(3): 248-252. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX703.009.htm [32] 潘保田, 李吉钧, 曹继秀, 等, 1996. 化隆盆地地貌演化与黄河发育研究. 山地研究, 14(3): 153-158. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA603.002.htm [33] 潘保田, 苏怀, 胡春生, 等, 2006. 兰州地区1.0 Ma黄河阶地的发现和0.8 Ma阶地形成时代的重新厘定. 自然科学进展, 16(11): 1411-1418. doi: 10.3321/j.issn:1002-008X.2006.11.007 [34] 潘保田, 苏怀, 刘小丰, 等, 2007. 兰州东盆地最近1.2 Ma的黄河阶地序列与形成原因. 第四纪研究, 27(2): 172-180. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200702001.htm [35] 申洪源, 贾玉连, 张红梅, 等, 2006. 内蒙古黄旗海湖泊沉积物粒度指示的湖面变化过程. 干旱区地理, 29(4): 457-462. doi: 10.3321/j.issn:1000-6060.2006.04.001 [36] 王建, 刘泽纯, 姜文英, 等, 1996. 磁化率与粒度、矿物的关系及其古气候意义. 地理学报, 51(2): 155-163. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB602.008.htm [37] 王萍, 蒋汉朝, 袁道阳, 等, 2008. 兰州黄河Ⅱ和Ⅲ级阶地的地层结构、年龄及环境意义. 第四纪研究, 28(4): 553-563. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200804006.htm [38] 夏凯生, 谢世友, 何多兴, 2007. 重庆江北砾岩磁化率变化特征及其古环境意义. 人民长江, 38(2): 123-125. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE200702042.htm [39] 姚檀栋, 施雅风, 秦大河, 等, 1997. 古理雅冰心中末次间冰期以来气候变化记录研究. 中国科学(D辑), 27(5): 447-452. [40] 杨小强, 李华梅, 2002. 泥河湾盆地沉积物粒度组分与磁化率变化相关性研究. 沉积学报, 20(4): 675-679. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200204023.htm [41] 岳乐平, 雷祥义, 屈红军, 1997. 黄河中游水系的阶地发育时代. 地质论评, 43(2): 186-192. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199702013.htm [42] 赵振明, 刘百篪, 2003. 青海共和至甘肃兰州黄河河谷地貌的形成与青藏高原东北缘隆升的关系. 西北地质, 36(2): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200302001.htm [43] 周晓红, 赵景波, 2007. 近120年来高陵渭河河漫滩沉积物磁化率指示的气候变化. 水土保持学报, 21(3): 196-200. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS200703043.htm