Geological Significance of Miocene-Early Pleistocene Palynological Zones in the Gyirong Basin, Southern Tibet
-
摘要: 吉隆盆地为高喜马拉雅中新世晚期约10 Ma时期形成的一个南北向断陷盆地, 其东侧为同沉积正断层, 沃马剖面位于盆地沉降中心的东南部.在该剖面下部新发现一套中新世巨厚砾岩层(旦增竹康组).通过锆石和磷灰石裂变径迹年代学研究得出吉隆盆地控盆断裂早期活动时间为13.4±1.9 Ma, 源区12~11 Ma发生构造热事件, 据此推算出吉隆盆地初始裂陷后开始沉积的底界年龄约为10 Ma.综合前人在吉隆盆地得出的7.20~1.67 Ma古地磁测年值, 可得出吉隆盆地旦增竹康组年龄为10.0~7.4 Ma, 沃马组年龄为7.40~1.67 Ma.根据孢粉组合带和孢粉组合反映的植物类型和古环境变化, 沿剖面自下而上划分为3个孢粉组合带和9个孢粉组合及其对应的植被类型.吉隆地区古气候变化可划分为3个阶段: (1)组合带Ⅰ和孢粉组合1~2, 为温暖偏干环境的常绿与落叶针阔叶混交林, 地层对比时代为晚中新世(10.0~7.0 Ma); (2)组合带Ⅱ和孢粉组合3~7, 为寒冷干旱环境的落叶针叶林, 期间存在一次暖湿气候的波动, 地层对比时代为晚中新世晚期-早上新世(7.0~3.3 Ma); (3)组合带Ⅲ和孢粉组合8~9, 为温凉偏干的气候下生长暗针叶林和落叶阔叶林构成的针阔叶混交林, 地层对比时代为晚上新世(3.30~1.67 Ma).Abstract: The Gyirong basin is one of east-west extensional basins distributed among the high Himalayas. The Late Cenozoic sequence is mainly Woma Formation, consisting of lacustrine and fluvial deposits, from which a Hipparion fauna in 7 Ma was found. However, Danzengzhukang Formation is newly found at the base of the section attributed to alluvial sequence. The zircon and apatite fission track thermochronology shows that eroded source experienced tectonic thermal event at 12-11 Ma, and early activity of the east boundary normal fault of the basin occurred during 13.4±1.9 Ma. Based on the previous paleomagnetostratigraphic researches of the basin, the age interval of the section is most reasonably determined as between 10 and 1.67 Ma. Through abundant palynological analyses, 3 palynological zones and 9 palynological assemblages and vegetable types are recognized, and 3 phases of paleoclimatic changes are revealed: (1) 10.0-6.7 Ma, correlating with palynological zone Ⅰ and assemblages 1-2, it was warm and damp-dry coniferous-leaved and broad-leaved mixed forests, but became cool and humid during 9.5-7.0 Ma. (2) 6.7-3.3 Ma, correlating with palynological zone Ⅱ and assemblages 3-7, it turned cold and arid deciduous coniferous-leaved forests, marked by the increase in the cold-tolerant tree taxa and drought-tolerant herb taxa, but the relative increase of broad-leaved taxa suggests climate underwent warm and humid fluctuations during 5.0-4.3 Ma. (3) 3.30-1.67 Ma, correlating with palynological zone Ⅲ and assemblages 8-9, it got cool and damp-dry deciduous coniferous-leaved and broad-leaved mixed forests.
-
Key words:
- Qinghai-Tibetan plateau /
- Gyirong basin /
- palynological assemblage /
- paleoclimate change /
- Neogene
-
图 2 西藏吉隆沃马剖面新近系旦增竹康组—沃马组地层柱状图
1.平行层理; 2.水平层理; 3.板状交错层理; 4.楔状交错层理; 5.叠瓦状构造; 6.砂砾石透镜体; 7.砾岩; 8.含砾砂岩; 9.砂岩; 10.粉砂岩; 11.泥质粉砂岩; 12.粉砂质泥岩、泥岩; 13.三趾马动物群化石点. Af.冲积扇; fr-fe.扇根-扇端; Rb.河流; rb-fp河床-泛滥平原; Fd.扇三角洲; fdp.扇三角洲平原; fdp-fdm.扇三角洲平原-前缘; L.湖泊; k1.滨湖; sl.浅湖; d1.深湖
Fig. 2. Composite strata column section of Neogene Danzengzhukang Formation and Oma Formation in Gyirong basin, Tibet
图 3 吉隆沃马剖面蕨类和裸子植物孢子主要类型属种化石
1.凤尾蕨Pteris sp.;样品号:S2BF62-6(71);2.瘤足蕨Plagiogyria sp.;样品号:S2BF62-6(71);3.海金沙Lygodium sp.;样品号:S2BF62-7(72);4.水龙骨Polypodium sp.;样品号:S2BF62-7(72);5.罗汉松Podocarpus sp.;样品号:S2BF88-5(44);6.松Pinus sp.;样品号:S1BF14-1(6);7.无囊铁杉Tsuga sp1.;样品号:S1BF14-1(6);8.具周囊铁杉Tsuga sp2.;样品号:S2BF62-7(72);9.雪松Cedrus sp.;样品号:S1BF22-1(13);10.云杉Picea sp.;样品号:S1BF22-1(13);11.冷杉Abies sp.;样品号:S1BF14-1(6)
Fig. 3. Representative photographs of fern and gymnosperm spore grains from the Oma Section in the Gyirong basin
图 4 吉隆沃马剖面被子植物花粉主要类型属种化石
1.柳Salix sp.;样品号:S2BF63-6(82);2.楝Melia sp.;样品号:S2BF48-3(47);3.鹅耳枥Carpinus sp.;样品号:S1BF14-1(6);4.榛Corylns sp.;样品号:S2BF96-4(50);5.常绿栎Quercus evergreen;样品号:S2BF48-3(47);6.落叶栎Quercus deciduous.;样品号:S2BF48-3(47);7.桤木Alnus sp.;样品号:S1BF22-1(13);8.桦Betula sp.;样品号:S1BF14-1(6);9.枫杨Pterocarya sp.;样品号:S2BF96-4(50);10.胡桃Juglans sp.;样品号:S2BF62-7(72);11.椴Tilia sp.;样品号:S2BF48-4(48);12.蒿Artemisia sp.;样品号:S1BF15-1(7);13.菊科Compositae;样品号:S2BF36-2(30);14.藜Chenopodium sp.;样品号:S1BF14-1(6)
Fig. 4. Representative photographs of angiosperm pollen grains from the Oma Section in Gyirong basin
-
[1] An, Z.S., Kutzbach, J.E., Prell, W.L., et al., 2001. Evolution of Asian monsoons and phased uplift of the Himalaya—Tibetan plateau since Late Miocene times. Nature, 411: 62-66. doi: 10.1038/35075035 [2] Brozovic, N., Burbank, D.W., 2000. Dynamic fluvial systems and gravel progradation in the Himalayan foreland. Geological Society of America Bulletin, 112: 394-412. doi:10.1130/0016-7606(2000)112<394:DFSAGP>2.0.CO [3] Cande, S.C., Kent, D.V., 1995. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research, 100(B4): 6093-6095. doi: 10.1029/94JB03098 [4] Cao, L., 1982. Pliocene palynological flora in Disong of Burang, Xizang (Tibet). Acta Palaeontologica Sinica, 21(4): 469-484 (in Chinese with English abstract). [5] Catlos, E.J., Dubey, C.S., Harrison, T.M., et al., 2004. Late Miocene movement within the Himalayan main Central Thrust shear zone, Sikkim, North-East India. Journal of Metamorphic Geology, 22: 207-226. doi: 10.1111/j.1525-1314.2004.00509.x [6] Chen, W.Y., 1982. Pliocene environment of Hipparion fauna of middle Himalaya range. Vertebrata Palasiatica, 20(1): 45-54 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GJZD198201005.htm [7] Chen, W.Y., Fan, G.Z., Yu, Q.L., 1977. The sedimentary environments, clay minerals and paleoclimate in the Pliocene of Gyirong basin, Tibet. Vertebrata Palasiatica, 15(4): 261-270 (in Chinese). [8] Coleman, M., Hodges, K., 1995. Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimum age for east-west extension. Nature, 374: 49-52. doi: 10.1038/374049a0 [9] Deng, T., Li, Y.M., 2005. Vegetational ecotype of the Gyirong basin in Tibet, China and its response in stable carbon isotopes of mammal tooth enamel. Chinese Science Bulletin, 50(11): 1109-1113 (in Chinese). doi: 10.1360/04td0275 [10] Garzione, C.N., 2008. Surface uplift of Tibet and Cenozoic global cooling. Geology, 36(12): 1003-1004. doi: 10.1130/focus122008.1 [11] Garzione, C.N., DeCelles, P.G., Hodkinson, D.G., et al., 2003. East-west extension and Miocene environmental change in the southern Tibetan plateau: thakkhola graben, Central Nepal. Geological Society of America Bulletin, 115(1): 3-20. doi:10.1130/0016-7606(2003)115<0003:EWEAME>2.0.CO [12] Han, J.E., Yu, J., Meng, Q.W., et al., 2005. Palynological records in the Qangzê Section of the Zanda basin, Ngari, Tibet. Journal of Geomechanics, 11(4): 320-327 (in Chinese with English abstract). [13] Harrison, T.M., Copeland, P., Hall, S.A., et al., 1993. Isotopic preservation of Himalaya/Tibetan uplift, denudation, and climate histories of two molasse deposits. Journal of Geology, 101: 157-175. doi:0022-1376/93/0102-006S1.00 [14] Hodges, K.V., Parrish, R.R., Housh, T.B., et al., 1992. Simultaneous Miocene extension and shortening in the Himalayan orogen. Science, 258: 1466-1470. doi: 10.1126/science.258.5087.1466 [15] Hoorn, C., Ohja, T., Quade, J., 2000. Palynological evidence for vegetation development and climatic change in the Sub-Himalayan zone (Neogene, Central Nepal). Palaeogeography, Palaeoclimatology, Palaeoecology, 163: 133-161. doi: 10.1016/S0031-0182(00)00149-8 [16] Huang, W.B., Ji, H.X., 1979. Discovery of Hipparion fauna in Xizang. Chinese Science Bulletin, 19: 885-888 (in Chinese). [17] Klootwijk, C.T., Gee, J.S., Peirce, J.W., et al., 1992. Neogene evolution of the Himalayan-Tibetan region: constraints from ODP site 758, northern ninetyeast ridge; bearing on climatic change. Palaeogeography, Palaeoclimatology, Palaeoecology, 95(1-2): 95-110. doi: 10.1016/0031-0182(92)90167-4 [18] Li, C.K., Ji, H.X., 1981. Two new rodents from Neogene of Chilong basin, Tibet. Vertebrata Palasiatica, 19(3): 246-256 (in Chinese with English abstract). [19] Li, G.Y., Qian, Z.S., Hu, Y., 1995. Technical manual of pollen analysis. Geological Publishing House, Beijing, 65-70 (in Chinese). [20] Li, H.B., Valli, F., Xu, Z.Q., et al., 2006. Deformation and tectonic evolution of the Karakorum fault, western Tibet. Chinese Geology, 33(2): 239-255 (in Chinese with English abstract). [21] Li, J.J., Wen, S.X., Zhang, Q.S., et al., 1979. Discussing age, extent and form about uplifting of the Tibet plateau. Science in China (Ser. A), 6: 608-616 (in Chinese). [22] Li, W.Y., Liang, Y.L., 1983. Sporo-pollen analysis on the lacustrine deposits in Zanda basin during the Pliocene. In: The comprehensive scientific expedition to the Qinghai-Xizang plateau, Chinese Academy of Sciences, ed., Quaternary Geology of Tibet. Science Press, Beijing, 132-144 (in Chinese). [23] Liu, C., 2008. Fission track thermochronology study of tectonic exhumation in the Gyirong of Tibet (Dissertation). China University of Geosciences, Wuhan, 33-44 (in Chinese). [24] Liu, C., Wang, G.C., Wang, A., et al., 2007. Fission-track evidence of Cenozoic different uplift processes of Himalayan Mountains. Earth Science Frontiers, 14(6): 273-281 (in Chinese with English abstract). [25] Liu, D.M., Li, D.W., Yang, W.R., et al., 2005. Evidence from fission track ages for the tectonic uplift of the Himalayan orogen during Late Cenozoic. Earth Science—Journal of China University of Geosciences, 30(2): 147-152 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200502003.htm [26] Liu, G.W., 1988. Late Tertiary palynological sequence of northern China. Acta Palaeontologica Sinica, 27(1): 75-85 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-GSWX198801017.htm [27] Lü, R.P., Luo, P., Han, J.E., et al., 2006. Features of the sporopollen assemblage at the Toling Section in the Zhada basin, Tibet, China, and its paleoclimatic significance. Geological Bulletin of China, 25(12): 1475-1480 (in Chinese with English abstract). [28] Meigs, J.A., Burbank, D.W., Beck, R.A., 1995. Middle-Late Miocene (> 10 Ma) formation of the main boundary thrust in the western Himalaya. Geology, 23(5): 423-426. doi:10.1130/0091-7613(1995)023<0423:MLMMFO>2.3.CO [29] Mercier, J.L., Armijo, R., Tapponnier, P., et al., 1987. Change from Late Tertiary compression to Quaternary extension in southern Tibet during the India-Asia collision. Tectonics, 6(3): 275-304. doi: 10.1029/TC006i003p00275 [30] Molnar, P., England, P., Martinod, J., 1993. Mantle dynamics, up lift of the Tibetan plateau, and the Indian monsoon. Reviews of Geophysics, 31: 357-396. doi: 10.1029/93RG02030 [31] Nakayama, K., Ulak, P.D., 1999. Evolution of fluvial style in the Siwalik Group in the foothills of the Nepal Himalaya. Sedimentary Geology, 125(3-4): 205-224. doi: 10.1016/S0037-0738(99)00012-3 [32] Pan, Y., Kidd, W.S.F., 1992. Nyainqentanglha shear zone: a Late Miocene extensional detachment in the southern Tibetan plateau. Geology, 20(9): 775-778. doi:10.1130/0091-7613(1992)020<0775:NSZALM>2.3.CO [33] Pei, J.L., Sun, Z.M., Wang, X.S., et al., 2009. Evidence for Tibetan plateau uplift in Qaidam basin before Eocene-Oligocene boundary and its climatic implications. Journal of Earth Science, 20(2): 430-437. doi: 10.1007/s12583-009-0035-y [34] Qiu, Z.X., Qiu, Z.D., 1990. The sort and stage of Neogene local mammalian faunas group in China. Journal of Stratigraphy, 14(4): 241-260 (in Chinese with English abstract). [35] Saylor, J.E., Quade, J., Dettman, D.L., et al., 2009. The Late Miocene through present paleoelevation history of southwestern Tibet. American Journal of Science, 309: 1-42. doi: 10.2475/01.2009.01 [36] Shen, X.H., Wang, F.B., Zhang, J., 1995. Late Cenozoic magnetostratigraphy and concerned discussion of Gyirong basin, south of Tibet. In: Annual of formation and environment of Tibetan plateau with environmental system research. Science Press, Beijing, 103-110 (in Chinese). [37] Shi, Y.F., Li, J.J., Li, B.Y., 1998. Late Cenozoic uplift and environmental change of Qinghai-Tibet plateau. Guangdong Science and Technology Press, Guangzhou, 1-463 (in Chinese). [38] Shi, Y.F., Li, J.J., Li, B.Y., et al., 1999. Uplift of the Qinghai-Xizang (Tibetan) plateau and East Asia environmental change during Late Cenozoic. Acta Geographica Sinica, 54(1): 10-20 (in Chinese with English abstract). [39] Shi, Y.F., Liu, D.S., 1964. Preliminary report of scientific expedition in the region of Mount Shishapangma. Chinese Science Bulletin, 10: 928-938 (in Chinese). [40] Song, Z.C., 1959. Miocene palynological assemblage in Shanwang, Shandong Province. Acta Palaeontologica Sinica, 7(2): 99-115 (in Chinese with English abstract). [41] Song, Z.C., Liu, J.L., 1982. The Tertiary sporo-pollen assemblages from Namlin of Xizang. In: The comprehensive scientific expedition to the Qinghai-Xizang plateau, Chinese Academy of Sciences ed., Palaeontology of Xizang (Book 5). Science Press, Beijing, 153-164 (in Chinese). [42] Sun, J.M., Zhang, L.Y., Deng, C.L., et al., 2008. Evidence for enhanced aridity in the Tarim basin of China since 5.3 Ma. Quaternary Science Reviews, 27(9-10): 1012-1023. doi: 10.1016/j.quascirev.2008.01.011 [43] Sun, L.M., Yan, T.S., Tang, G.Y., et al., 2007. Neogene sporopollen assemblages and paleogeography in the Gyirong basin, Tibet. Geology in China, 34(1): 49-54 (in Chinese with English abstract). [44] Tapponnier, P., Mercier, J.L., Armijo, R., et al., 1981. Field evidence for active normal faulting in Tibet. Nature, 294: 410-414. doi: 10.1038/294410a0 [45] Wang, D.C., Zhang, J.J., Yang, X.Y., et al., 2009. Tectonic and environmental evolution of Gyirong basin, and its relationship to the uplift of Tibetan plateau. Acta Scientiarum Naturalium Universitatis Pekinensis, 45(1): 79-89 (in Chinese with English abstract). [46] Wang, F.B., Li, S.F., Shen, X.H., et al., 1996. Formation and evolvement of the Gyirong basin with its environmental transform and uplift of the Himalayas. Science in China (Ser. D), 26(4): 329-335 (in Chinese). http://qikan.cqvip.com/Qikan/Article/Detail?id=2081994 [47] Wang, K. F, Yang, J.W., Li, Z., et al., 1975. On the Tertiary sporo-pollen assemblages from Lunpola basin of Xizang, China and their palaeogeographic significance. Scientia Geologica Sinica, 4: 366-378 (in Chinese with English abstract). http://www.researchgate.net/publication/285486146_On_the_Tertiary_sporo-pollen_assemblages_from_Lunpola_Basin_of_Xizang_China_and_their_palaeogeographic_significance [48] Wang, S.F., Zhang, W.L., Feng, X.M., et al., 2008. Magnetostratigraphy of the Zanda basin in Southwest Tibet plateau and its tectonic implications. Chinese Science Bulletin, 53(9): 1393-1400. doi: 10.1007/s11434-008-0132-9 [49] Wang, W.M., 1992. Palynofloristic changes in the Neogene of South China. Acta Micropalaeontologica Sinica, 9(1): 81-95 (in Chinese with English abstract). http://www.researchgate.net/publication/312156563_Palynofloristic_changes_in_the_Neogene_of_South_China [50] Wang, Y., Deng, T., Biasatti, D., 2006. Ancient diets indicate significant uplift of southern Tibet after ca. 7 Ma. Geology, 34(4): 309-312. doi: 10.1130/G22254.1 [51] Wang, Y., Wan, J.L., Li, D.M., et al., 2001. Thermochronological evidence of tectonic uplift in Nyalam, South Tibetan detachment system. Bulletin of Mineralogy, Petrology and Geochemistry, 20(4): 292-294 (in Chinese with English abstract). [52] Wu, N.Q., Pei, Y.P., Lu, H.Y., et al., 2006. Marked ecological shifts during 6.2-2.4 Ma revealed by a terrestrial molluscan record from the Chinese Red Clay Formation and implication for palaeoclimatic evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 233: 287-299. doi: 10.1016/j.palaeo.2005.10.006 [53] Wu, Y.S., Yu, Q.L., 1980. Pollen-spores assemblages from localities of Hipparion fauna in Xizang and its significance. In: The comprehensive scientific expedition to the Qinghai-Xizang plateau, Chinese Academy of Sciences. Palaeontology of Tibet (Book 1). Science Press, Beijing, 76-82 (in Chinese). [54] Xu, R., Tao, J.R., Sun, X.J., 1973. On the discovery of a quercus semicarpifolia bed in Mount Shishapangma and its significance in botany and geology. Acta Botanica Sinica, 15(1): 103-119 (in Chinese with English abstract). http://www.researchgate.net/publication/293309821_on_the_discovery_of_a_quercus_semicarpifolia_bed_in_mount_shisha_pangma_and_its_significance_in_botany_and_geology [55] Yin, A., Kapp, P., Murphy, M., 1999. Significant Late Neogene east-west extension in northern Tibet. Geology, 27: 787-790. doi:10.1130/0091-7613(1999)027<0787:SLNEWE>2.3.CO [56] Yu, J., Luo, P., Han, J.E., et al., 2007. Sporopollen records in the Guge Section of the Zanda basin, Tibet, and paleoenvironmental information reflected by it. Geology in China, 34(1): 55-60 (in Chinese with English abstract). [57] Yue, L.P., Deng, T., Zhang, R., et al., 2004. Paleomagnetic chronology and records of Himalayan uplift on the Longgugou Section of Gyirong-Oma basin in Xizang (Tibet). Chinese Journal of Geophysics, 47(6): 1009-1016 (in Chinese with English abstract). [58] Zhang, K.X., Wang, G.C., Cao, K., et al., 2008. Cenozoic sedimentary records and geochronological constraints of differential uplift of the Qinghai-Tibet plateau. Science in China (Ser. D), 51(11): 1658-1672. doi: 10.1007/s11430-008-0132-2 [59] Zhang, K.X., Wang, G.C., Chen, F.N., et al., 2007. Coupling between the uplift of Qinghai-Tibet plateau and distribution of basins of Paleogene-Neogene. Earth Science—Journal of China University of Geosciences, 32(5): 583-597 (in Chinese with English abstract). [60] Zhang, Z.L., Tian, L.F., Fan, Y.G., et al., 2004. New results and major progress in geological survey of the Saga County, Sangsang district and Gyirong County sheets. Geological Bulletin of China, 23(5-6): 427-432 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD2004Z1003.htm [61] Zheng, Y.H., 1983. Palynological assemblages of OMA formation in the Gyirong basin. In: The comprehensive scientific expedition to the Qinghai-Xizang plateau, Chinese Academy of Sciences ed., Quaternary Geology of Tibet. Science Press, Beijing, 145-152 (in Chinese). [62] Zhu, C., 1995. Neotectonism and Quaternary glaciation of Gyirong basin, Xizang. Mountain Research, 13(4): 219-225 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SDYA504.002.htm [63] 曹流, 1982. 西藏普兰涕松上新世孢粉植物群. 古生物学报, 21(4): 469-484. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX198204007.htm [64] 陈万勇, 1982. 喜马拉雅山中段上新世三趾马动物群生活环境的探讨. 古脊椎动物与古人类, 20(1): 45-54. https://www.cnki.com.cn/Article/CJFDTOTAL-GJZD198201005.htm [65] 陈万勇, 范贵忠, 于浅黎, 1977. 西藏吉隆盆地上新世沉积相、粘土矿物特征及古气候. 古脊椎动物与古人类, 15(4): 261-270. https://www.cnki.com.cn/Article/CJFDTOTAL-GJZD197704003.htm [66] 邓涛, 李玉梅, 2005. 西藏吉隆盆地的植被生态类型及其在哺乳动物牙齿釉质稳定碳同位素组成上的响应. 科学通报, 50(11): 1109-1113. doi: 10.3321/j.issn:0023-074X.2005.11.009 [67] 韩建恩, 余佳, 孟庆伟, 等, 2005. 西藏阿里札达盆地香孜剖面孢粉分析. 地质力学学报, 11(4): 320-327. doi: 10.3969/j.issn.1006-6616.2005.04.004 [68] 黄万波, 计宏祥, 1979. 西藏三趾马动物群的首次发现及其对高原隆起的意义. 科学通报, 19: 885-888. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB197919006.htm [69] 李传夔, 计宏祥, 1981. 西藏吉隆上新世啮齿类化石. 古脊椎动物与古人类, 19(3): 246-256. https://www.cnki.com.cn/Article/CJFDTOTAL-GJZD198103008.htm [70] 李光瑜, 钱泽书, 胡昀, 1995. 孢粉分析技术手册. 北京: 地质出版社, 65-70. [71] 李海兵, Valli, F., 许志琴, 等, 2006. 喀喇昆仑断裂的变形特征及构造演化. 中国地质, 33(2): 239-255. doi: 10.3969/j.issn.1000-3657.2006.02.002 [72] 李吉均, 文世宣, 张青松, 等, 1979. 青藏高原隆起的时代、幅度和形式的探讨. 中国科学(A辑), 6: 608-616. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK197906008.htm [73] 李文漪, 梁玉莲, 1983. 札达盆地上新世湖相沉积的孢粉分析. 见: 中国科学院青藏高原综合科学考察队编, 西藏第四纪地质. 北京: 科学出版社, 132-144. [74] 刘超, 2008. 西藏吉隆一带构造剥露的裂变径迹年代学研究(学位论文). 武汉: 中国地质大学, 33-44. [75] 刘超, 王国灿, 王岸, 等, 2007. 喜马拉雅山脉新生代差异隆升的裂变径迹热年代学证据. 地学前缘, 14(6): 273-281. doi: 10.3321/j.issn:1005-2321.2007.06.034 [76] 刘德民, 李德威, 杨巍然, 等, 2005. 喜马拉雅造山带晚新生代构造隆升的裂变径迹证据. 地球科学——中国地质大学学报, 30(2): 147-152. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200502003.htm [77] 刘耕武, 1988. 我国北方晚第三纪孢粉序列. 古生物学报, 27(1): 75-85. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX198801008.htm [78] 吕荣平, 罗鹏, 韩建恩, 等, 2006. 西藏札达盆地托林剖面孢粉组合特征及其古气候意义. 地质通报, 25(12): 1475-1480. doi: 10.3969/j.issn.1671-2552.2006.12.017 [79] 申旭辉, 王富葆, 张捷, 1995. 藏南吉隆盆地晚新生代磁性地层学研究及相关讨论. 见: 青藏高原形成演化, 环境变迁与生态系统研究学术论文年刊. 北京: 科学出版社, 103-110. [80] 邱占祥, 邱铸鼎, 1990. 中国晚第三纪地方哺乳动物群的排序及其分期. 地层学杂志, 14(4): 241-260. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ199004000.htm [81] 施雅风, 李吉均, 李炳元, 1998. 青藏高原晚新生代隆升与环境变化. 广州: 广东科技出版社, 1-463. [82] 施雅风, 李吉均, 李炳元, 等, 1999. 晚新生代青藏高原的隆升与东亚环境变化. 地理学报, 54(1): 10-20. doi: 10.3321/j.issn:0375-5444.1999.01.002 [83] 施雅风, 刘东生, 1964. 希夏邦马峰地区科学考察初步报告. 科学通报, 10: 928-938. [84] 宋之琛, 1959. 山东山旺中新世地层中的孢粉组合. 古生物学报, 7(2): 99-115. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX195902002.htm [85] 宋之琛, 刘金陵, 1982. 西藏南木林第三纪孢粉组合. 见: 中国科学院青藏高原综合科学考察队编, 西藏古生物(第五分册). 北京: 科学出版社, 153-164. [86] 孙黎明, 阎同生, 唐桂英, 等, 2007. 西藏吉隆盆地新近纪孢粉组合及古地理研究. 中国地质, 34(1): 49-54. doi: 10.3969/j.issn.1000-3657.2007.01.007 [87] 王德朝, 张进江, 杨雄英, 等, 2009. 吉隆盆地构造、环境演化与青藏高原隆升. 北京大学学报(自然科学版), 45(1): 79-89. doi: 10.3321/j.issn:0479-8023.2009.01.013 [88] 王富葆, 李升峰, 申旭辉, 等, 1996. 吉隆盆地的形成演化、环境变迁与喜马拉雅山隆起. 中国科学(D辑), 26(4): 329-335. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199604006.htm [89] 王开发, 杨蕉文, 李哲, 等, 1975. 根据孢粉组合推论西藏伦坡拉盆地第三纪地层时代及其古地理. 地质科学, 4: 366-378. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX197504005.htm [90] 王伟铭, 1992. 中国南方晚第三纪孢粉植物群的变迁. 微体古生物学报, 9(1): 81-95. https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT199201007.htm [91] 王瑜, 万景林, 李大明, 等, 2001. 藏南伸展拆离系聂拉木一带构造抬升的热年代学证据. 矿物岩石地球化学通报, 20(4): 292-294. doi: 10.3969/j.issn.1007-2802.2001.04.024 [92] 吴玉书, 余浅黎, 1980. 西藏高原含三趾马动物群化石地点孢粉组合及其意义. 见: 中国科学院青藏高原综合科学考察队编. 西藏古生物(第一分册). 北京: 科学出版社, 76-82. [93] 徐仁, 陶君容, 孙湘君, 1973. 希夏邦马峰高山栎化石层的发现及其在植物学和地质学上的意义. 植物学报, 15(1): 103-119. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWXB197301009.htm [94] 余佳, 罗鹏, 韩建恩, 等, 2007. 西藏札达盆地古格剖面孢粉记录及其反映的古环境信息. 中国地质, 34(1): 55-60. doi: 10.3969/j.issn.1000-3657.2007.01.008 [95] 岳乐平, 邓涛, 张睿, 等, 2004. 西藏吉隆-沃马盆地龙骨沟剖面古地磁年代学及喜马拉雅山抬升记录. 地球物理学报, 47 (6): 1009-1016. doi: 10.3321/j.issn:0001-5733.2004.06.012 [96] 张克信, 王国灿, 陈奋宁, 等, 2007. 青藏高原古近纪-新近纪隆升与沉积盆地分布耦合. 地球科学——中国地质大学学报, 32(5): 583-597. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200705002.htm [97] 张振利, 田立富, 范永贵, 等, 2004. 萨嘎县幅、桑桑区幅、吉隆县幅地质调查新成果及主要进展. 地质通报, 23(5-6): 427-432. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2004Z1003.htm [98] 郑亚惠, 1983. 吉隆盆地沃马组孢粉组合. 见: 中国科学院青藏高原综合科学考察队编, 西藏第四纪地质. 北京: 科学出版社, 145-152. [99] 朱诚, 1995. 西藏吉隆盆地的新构造运动及第四纪冰川. 山地研究, 13(4): 219-225. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA504.002.htm