• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    札达盆地碎屑裂变径迹揭示的盆山耦合过程

    孟艳宁 王国灿 张克信 王岸

    孟艳宁, 王国灿, 张克信, 王岸, 2010. 札达盆地碎屑裂变径迹揭示的盆山耦合过程. 地球科学, 35(5): 747-758. doi: 10.3799/dqkx.2010.089
    引用本文: 孟艳宁, 王国灿, 张克信, 王岸, 2010. 札达盆地碎屑裂变径迹揭示的盆山耦合过程. 地球科学, 35(5): 747-758. doi: 10.3799/dqkx.2010.089
    MENG Yan-ning, WANG Guo-can, ZHANG Ke-xin, WANG An, 2010. Coupling Process of Sedimentary Basin-Orogenic Belt Induced by Detrital Fission Track Ages of Zanda Basin. Earth Science, 35(5): 747-758. doi: 10.3799/dqkx.2010.089
    Citation: MENG Yan-ning, WANG Guo-can, ZHANG Ke-xin, WANG An, 2010. Coupling Process of Sedimentary Basin-Orogenic Belt Induced by Detrital Fission Track Ages of Zanda Basin. Earth Science, 35(5): 747-758. doi: 10.3799/dqkx.2010.089

    札达盆地碎屑裂变径迹揭示的盆山耦合过程

    doi: 10.3799/dqkx.2010.089
    基金项目: 

    中国地质调查局项目 1212010610103

    国家自然科学基金项目 40902060

    国家自然科学基金项目 40672137

    国家自然科学基金项目 40921062

    详细信息
      作者简介:

      孟艳宁(1984-), 女, 硕士, 主要从事构造地质学研究

      通讯作者:

      王国灿, E-mail: wgcan@cug.edu.cn

    • 中图分类号: P542

    Coupling Process of Sedimentary Basin-Orogenic Belt Induced by Detrital Fission Track Ages of Zanda Basin

    • 摘要: 札达盆地是中新世9.5 Ma以来发育的新生代沉积盆地.沉积厚度、砾石成分和古流向分析显示札达盆地新生代沉积的物源主要来自盆地北部的阿伊拉日居山系.札达盆地系列样品碎屑锆石裂变径迹年龄结构显示存在两个明显的峰值年龄区间, 分别为12.6~15.3 Ma(P1峰值年龄)与19.8~22.2 Ma(P2峰值年龄).锆石裂变径迹年龄的滞后时间(lag time)与沉积时代对比分析显示, P1和P2峰值年龄为快速冷却事件的静态峰, 与北部阿伊拉日居地区基岩U-Pb年代研究揭示的热事件时间具有良好的可对比性.因此, 札达盆地碎屑裂变径迹年龄两个峰值年龄区间记录了源区阿伊拉日居的两次构造事件, 可能对应于喀喇昆仑断裂在中新世的两次强烈的构造活动.综合碎屑锆石、磷灰石裂变径迹年龄信息, 估算源区在32.6~9.5 Ma之间的平均冷却速率是15.4 ℃/Ma, 上新世末期—第四纪(3.6~1.4 Ma)之间再次发生了一次快速的隆升剥露事件.札达盆地中新生代沉积地层碎屑裂变径迹热年代学结构与喀喇昆仑断裂东南段阿伊拉日居的热事件年龄格局吻合, 从碎屑裂变径迹年代学角度揭示了造山带地区的盆山耦合过程.

       

    • 图  1  研究区地质构造简图及样品分布

      1.前中生代地层;2.中生代砂岩、浅变质岩;3.新生代花岗岩;4.新近纪地层;5.第四系;6.古近纪地层;7.古近纪火山岩;8.蛇绿混杂岩;9.现代湖泊;10.现代水系;11.中生代混杂岩;12.逆冲断层;13.拆离断层;14.右行走滑断层;15.裂变径迹样品点;YZS.雅鲁藏布江缝合带;KKF.喀喇昆仑断裂;STD.藏南拆离系;MCT.主中央断裂;MBT.主边界断裂

      Fig.  1.  Sketch map showing geological tectonic and sample distribution of the research area

      图  2  札达盆地新近纪地层沉积剖面磁性年龄、样品分布与砾石长轴定向

      Fig.  2.  Map showing depositional strata, magnetism ages, sample distribution and gravel long axial direction of Tertiary sedimentary section, Zanda basin

      图  3  札达盆地砾石层砾石长轴形态

      Fig.  3.  Long axis configurations of gravel in gravel strata, Zanda basin

      图  4  札达盆地新近纪沉积剖面中板状斜层理定向

      Fig.  4.  Map showing the tabular oblique bedding direction of Tertiary sedimentary section, Zanda basin

      图  5  ZFT年龄-样品沉积年龄分布(a)和滞后时间趋势(b)

      Fig.  5.  Distribution of ZFT ages and depositional ages (a) and the trending of ZFT lag time (b)

      图  6  AFT年龄-样品沉积年龄分布

      Fig.  6.  Distribution of AFT ages and depositional ages

      图  7  源区阿伊拉日居山地区FT热历史

      Fig.  7.  Thermal history of Ayila Rijyu region

      表  1  札达盆地碎屑锆石和磷灰石裂变径迹(FT)年龄测试结果

      Table  1.   Detrital zircon and apatite fission track dating ages, Zanda basin

      样品号 沉积年代(Ma) 颗粒数(N) ρd(105cm-2)(Nd) Ps(106cm-2)(Ns) Pi(106cm-2)(Ni) U(ug·g-1) P(x2)(%) P1t age(Ma±1σ)(%) P2t age(Ma±1σ)(%) P3t age(Ma±1σ)(%) Central age(Ma±1σ)(%)
      锆石裂变径迹
      S15-2-1 9.1 50 4.031(2 822) 5.02(4 395) 3.42(2 992) 338 0 17.8±2.3(2.5) 33.2±1.4(87.3) 67.1±4.9(10.3) 34.9±1.6
      S15-34-1 8.2 50 4.022(2 815) 4.67(4 195) 3.39(3 044) 335 0 17.8±2.3(10.1) 29.5±1.5(63.9) 54.0±5.0(26) 32.5±1.9
      S15-88-1 5.8 51 4.012(2 808) 2.02(1 644) 2.66(1 992) 264 0 15.3±0.6(92.2) 218±35(7.8) 18.3±1.6
      S15-117-1 4.0 50 4.002(2 801) 4.35(2 825) 3.20(2 079) 319 0 14.9±1.5(8.9) 28.6±1.1(76.1) 209.3±29(15) 33.6±2.9
      S15-132-1 3.6 50 3.993(2 795) 2.51(2 308) 2.97(2 723) 296 0 14.0±1.1(28.5) 22.2±1.1(69.6) 45.0±14(1.8) 19.7±0.9
      S15-140-1 2.8 51 3.983(2 788) 2.10(1 922) 2.72(2 490) 272 0.1 13.9±1.1(42) 21.3±1.2(58) 17.9±0.8
      S12-16-1 Q 50 3.973(2 781) 4.25(4 154) 3.50(3 421) 351 0 21.3±1.2(31.9) 33.0±1.3(68.1) 28.4±1.2
      S12-34-1 Q 50 3.963(2 774) 3.67(3 227) 5.88(5 174) 591 0 12.6±0.6(64.4) 19.8±1.0(35.6) 14.7±0.6
      磷灰石裂变径迹
      S15-2-1 9.1 50 3.210(3 443) 4.53(994) 1.99(4 369) 25 0 27.1±2.5(55.5) 47.6±4.4(40.1) 127.5±24.5(4.4) 38.0±3.3
      S15-34-1 8. 2 44 3.295(3 438) 3.25(615) 1.36(2 565) 16 0 33.0±2.5(93) 163.1±21(7) 37.5±4.5
      S15-88-1 5.8 15 3.244(3 441) 2.99(145) 1.39(673) 17 10.4 31.6±5.2(72.9) 54.6±17.4(7.8) 36.9±4.5
      S15-117-1 4.0 50 3.261(3 440) 5.24(1 044) 2.56(5 103) 31 0 24.1±2.2(61.2) 45.5±4.5(34.7) 185.7±26(4) 35±3.9
      S15-132-1 3.6 34 3.278(3 439) 2.70(391) 1.67(2 425) 20 32.5 26.6±3.2(92.4) 39.4±29(7.6) 27.4±2.2
      S15-140-1 2.8 45 3.295(3 438) 2.16(508) 1.48(3 483) 18 1.3 24.4±1.8(97.8) 168.0±78(2.2) 25.1±1.9
      S12-34-1 Q 25 2.956(3 460) 4.81(483) 5.27(5 296) 71 4.0 7.8±2.1(7.6) 14.8±1.1(92.4) 14.3±1.1
      下载: 导出CSV

      表  2  研究区盆山耦合热事件对比

      Table  2.   Coupling thermal event of sedimentary basin and its source mountain

      札达盆地沉积碎屑(FT峰值年龄)(Ma) 源区阿伊拉日居山地区(热事件年龄)(Ma)
      12.6~15.3 13.7~15.8
      19.8~22.2 22~25
      28.6~33.2 32~35
      下载: 导出CSV
    • [1] Bernet, M., Brandon, T.M., Garver, J.I., et al., 2002. Determining the zircon fission-track closure temperature; a zero-damage model for fission-track annealing in zircon. Abstracts with Programs—Geological Society of America. 34(5): 18. http://www.mendeley.com/research/determining-zircon-fissiontrack-closure-temperature/
      [2] Bernet, M., Garver, J.I., 2005. Fission-track analysis of detrital zircon. Reviews in Mineralogy and Geochemistry, 58(1): 205-237. doi: 10.2138/rmg.2005.58.8
      [3] Brandon, M.T., Roden-Tice, M.K., Garver, J.I., 1998. Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, Northwest Washington State. Geological Society of America, 110(8): 985-1009. doi:10.1130/0016-7606(1998)110<0985:LCEOTC>2.3.CO
      [4] Chen, Y., Chen, S.Y., Zhang, P.F., et al., 2008. Discussion on research methods of paleocurrent direction. Fault-Block Oil & Gas Field, 15(1): 37-40 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DKYT200801015.htm
      [5] Franck, V., Philippe, H.L., Jean-Louis, P., et al., 2008. New U-Th/Pb constraints on timing of shearing and long-term slip-rate on the Karakorum fault. Tectonics, 27: 1-33. doi: 10.1029/2007TC002184
      [6] Gao, X., 2006. The environment and evolution of Zhada basin, Tibet (Dissertation). China University of Geosciences, Beijing, 46-52 (in Chinese).
      [7] Guo, T.Y., Liang, D.Y., Zhang, Y.Z., et al., 1991. Ali, Tibet, geology. China University of Geosciences Press, Wuhan, 103-104 (in Chinese).
      [8] Hurford, A.J., 1986. Cooling and uplift patterns in the Lepontine Alps, South Central Switzerland and an age of vertical movement on the Insubric fault line. Contributions to Mineralogy and Petrology, 92(4): 413-427. doi: 10.1007/BF00374424
      [9] Li, B.Y., Wang, F.B., Zhang, Q.S., et al, 1983. Quaternary geology of Tibet. Science Press, Beijing, 15-40 (in Chinese).
      [10] Li, H.B., Franck, V., Xu, Z.Q., et al., 2006. Deformation and tectonic evolution of the Karakorum fault, western Tibet. Chinese Geology, 33(2): 239-255 (in Chinese with English abstract).
      [11] Li, H.B., Franck, V., Liu, D.Y., et al., 2007. Forming age of Karakorum: age constrains of zircon SHRIMP U-Pb. Chinese Science Bulletin, 52(4): 438-447 (in Chinese). doi: 10.1360/csb2007-52-4-438
      [12] Matte, P., Tapponnier, P., Arnaud, N., et al., 1996. Tectonics of western Tibet, between the Tarim and the Indus. Earth Planet. Sci. Lett. , 142: 311-330. doi: 10.1016/0012-821X(96)00086-6
      [13] Meng, X.G., Zhu, D.G., Shao, Z.G., et al., 2004. Discovery of rhinoceros fossils in the Pliocene in the Zanda basin, Ngari, Tibet. Geological Bulletin of China, 23(5): 609-612 (in Chinese with English abstract).
      [14] Meng, X.G., Zhu, D.G., Shao, Z.G., et al., 2006. The basic characteristics and evolution of the geological structures in the Zhada basin, Ali, Tibet. Earth Science Frontiers, 13(4): 160-167 (in Chinese with English abstract).
      [15] Murphy, M.A., Yin, A., Kapp, P., et al., 2000. Southward propagation of the Karakoram fault system, Southwest Tibet: timing and magnitude of slip. Geology, 28(5): 451-454. doi:10.1130/0091-7613(2000)28<451:SPOTKF>2.0.CO;2
      [16] Murphy, M.A., Yin, A., Kapp, P., et al., 2002. Structural evolution of the Gurla Mandhata detachement system, Southwest Tibet: implications for the eastward extent of the Karakoram fault system. Geol. Soc. Am. Bull., 114: 428-447. doi: 10.1130/0016-7606(2002)114<0428:SEOTGM>2.0.CO;2
      [17] Naeser, C.W., 1979. Thermal history of sedimentary basins: fission-track dating of subsurface rocks. In: Scholle, P.A., Schluger, P.R., ed., Aspect of diagenesis. SEPM Spec. Publ., 26: 109-112.
      [18] Pei, J.L., Sun, Z.M., Wang, X.S., et al., 2009. Evidence for Tibetan plateau uplift in Qaidam basin before Eocene-Oligocene boundary and its climatic implications. Journal of Earth Science, 20(2): 430-437. doi: 10.1007/s12583-009-0035-y
      [19] Phillips, R.J., Parrish, R.R., Searle, M.P., 1991. Age constraints on ductile deformation and long-term slip rates along the Karakoram Moutains Map 2538. John Wiley and Sons, Chichester.
      [20] Qian, F., 1990. Paleomagnetic methods used in Tibet since the Pliocene Ali, a preliminary study of horizontal movement. In: Li, G.C., ed., Himalayan tectonic evolution of the lithosphere—Tibet geophysical proceedings. Geological Publishing House, Beijing, 198-206 (in Chinese).
      [21] Qian, F., 1999. Study on magnetostratigraphy in Qinghai-Tibetan plateau in Late Cenozoic. Journal of Geomechanics, 5(4): 22-34 (in Chinese with English abstract).
      [22] Rolland, Y., Mahéo, G., Pécher, A., et al., 2009. Syn-kinematic emplacement of the Pangong metamorphic and magmatic complex along the Karakorum fault(N Ladakh). Journal of Asian Earth Sciences, 34: 10-25. doi: 10.1016/j.jseaes.2008.03.009
      [23] Searle, M.P., Weinberg, R.F., Dunlap, W.J., 1998. Transpressional tectonics along the Karakoram fault zone, northern Ladakh: constraints on Tibetan extrusion. Geol. Soc. London Spec. Pub., 135: 307-326. doi: 10.1144/GSL.SP.1998.135.01.20
      [24] Shao, Z.G., Meng, X.G., Zhu, D.G., et al., 2005. Active faults in the Zhada basin of the Ngari area, Tibet, China. Geological Bulletin of China, 24(7): 625-629 (in Chinese with English abstract).
      [25] Shao, Z.G., Meng, X.G., Yang, C.B., et al., 2006. Formation mechanism of seesaw type in Zanda basin, Ngari, Xizang (Tibet). Geological Review, 52(2): 215-218 (in Chinese with English abstract).
      [26] Wang, A., Wang, G.C., Zhang, K.X., et al., 2009. Late Neogene mountain building of eastern Kunlun orogen: constrained by DEM analysis. Journal of Earth Science, 20(2): 391-400. doi: 10.1007/s12583-009-0032-1
      [27] Wang, G.C., 2002. A new approach to determine the exhumation history of the sediment provenance: detrital zircon and apatite fission-track thermochronology. Geological Science and Technology Information, 21(4): 35-40 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200204007.htm
      [28] Wang, J., Zhu, D.G., Meng, X.G., et al., 2006. Features of the change in Pliocene depositional environment at the Guge Formation section in the Zanda basin, Tibet. Geology in China, 33(5): 1005-1012 (in Chinese with English abstract).
      [29] Wang, S.F., Blisniuk, P., Kempf, O., et al., 2008a. The basin-range system along the south segment of Karakorum fault zone, Tibet. Int. Geol. Rev., 50(2): 121-134. doi: 10.2747/0020-6814.50.2.121
      [30] Wang, S.F., Zhang, W.L., Fang, X.M., et al., 2008b. Magnetic characteristics and tectonic significance of Zanda basin, Tibet. Chinese Science Bulletin, 53(6): 676-683 (in Chinese). doi: 10.1360/csb2008-53-6-676
      [31] Wang, W.L., Zhang, J.J., Zhang, B., 2004. Structural and sendimentary features in Zanda basin of Tibet. Acta Scientiarum Naturalium, 40(6): 872-878 (in Chinese with English abstract).
      [32] Xia, D.X., Liu, S.K., 1997. Tibet Autonomous Region lithostratigraphy. China University of Geosciences Press, Wuhan, 239-240(in Chinese).
      [33] Zhang, J.J., 2007. A review on the extensional structures in the northern Himalaya and southern Tibet. Geological Bulletin of China, 26(6): 639-649 (in Chinese with English abstract).
      [34] Zhang, J.J., Guo, L., 2007. Structure and geochronology of the southern Xainza-Dinggye rift and its relationship to the South Tibetan detachment system. Journal of Asian Earth Sciences, 29: 722-736. doi: 10.1016/j.jseaes.2006.05.003
      [35] Zhang, K.X., Wang, G.C., Cao, K., et al., 2008. Main uplift events of Tibet in Cenozoic: sedimentary response and thermochronology record. Science in China (Ser. D), 38(12): 1575-1588 (in Chinese).
      [36] Zhang, Q.S., Wang, F.B., Ji, H.X., et al., 1981. Pliocene strata of Zanda basin, Tibet. Journal of Stratigraphy, 5(3): 216-220 (in Chinese).
      [37] Zhao, Z.Z., Li, Y.T., Ye, H.F., et al., 2001. Qinghai-Tibet plateau formation. Science Press, Beijing, 177-322 (in Chinese).
      [38] Zheng, D.W., Zhang, P.Z., Wan, J.L., et al, 2000. Detrital grain thermochronology—a potential method for research on coupling process between basin and mountain. Seismology and Geology, 22(B12): 25-36 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZDZ2000S1005.htm
      [39] Zhou, Y., Ding, L., Deng, W.M., et al., 2000. Tectonic cyclothems in the Zanda basin and its significance. Chinese Journal of Geology, 35(3): 305-315 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX200003005.htm
      [40] Zhou, Y., Xu, R.H., Yan, Y.H., et al., 2001. Dating of the Karakorum strike-slip fault. Acta Geologica Sinica, 75(1): 10-18. http://d.wanfangdata.com.cn/Periodical/dzxb-e200101002
      [41] Zhu, D.G., Meng, X.G., Shao, Z.G., et al., 2006. The formation and evolution of Zhada basin in Tibet and the uplift of the Himalayas. Acta Geoscientica Sinica, 27(3): 193-200 (in Chinese with English abstract).
      [42] Zhu, D.G., Meng, X.G., Shao, Z.G., et al., 2007. Evolution of the paleovegetation, paleoenvironment and paleoclimate during Pliocene-Early Pleistocene in Zhada basin, Ali, Tibet. Acta Geologica Sinica, 81(3): 295-307(in Chinese with English abstract). http://www.researchgate.net/publication/285896181_Evolution_of_the_paleovegetation_paleoenvironment_and_paleoclimate_during_Pliocene-early_Pleistocene_in_Zhada_basin_Ali_Tibet
      [43] 陈妍, 陈世悦, 张鹏飞, 等, 2008. 古流向的研究方法探讨. 断块油气田, 15(1): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT200801015.htm
      [44] 高雄, 2006. 西藏札达盆地形成环境及其发展演化(硕士学位论文). 北京: 中国地质大学, 46-52.
      [45] 郭铁鹰, 梁定益, 张宜智, 等, 1991. 西藏阿里地质. 武汉: 中国地质大学出版社, 103-104.
      [46] 李炳元, 王富葆, 张青松, 等, 1983. 西藏第四纪地质. 北京: 科学出版社, 15-40.
      [47] 李海兵, Franck, V., 许志琴, 等, 2006. 喀喇昆仑断裂的变形特征及构造演化. 中国地质, 33(2): 239-255. doi: 10.3969/j.issn.1000-3657.2006.02.002
      [48] 李海兵, Franck, V., 刘敦一, 等, 2007. 喀喇昆仑断裂的形成时代: 锆石SHRIMP U-Pb年龄的制约. 科学通报, 52(4): 438-447. doi: 10.3321/j.issn:0023-074X.2007.04.012
      [49] 孟宪刚, 朱大岗, 邵兆刚, 等, 2004. 西藏阿里札达盆地上新统中犀类化石的发现及意义. 地质通报, 23(5): 609-612. doi: 10.3969/j.issn.1671-2552.2004.05.036
      [50] 孟宪刚, 朱大岗, 邵兆刚, 等, 2006. 西藏阿里札达盆地地质构造的基本特征及其演化. 地学前缘, 13(4): 160-167. doi: 10.3321/j.issn:1005-2321.2006.04.013
      [51] 钱方, 1990. 用古地磁方法对西藏阿里上新世以来水平运动的初步研究. 见: 李兴岑编, 喜马拉雅岩石圈构造演化-西藏地球物理论文集. 北京: 地质出版社, 198-206.
      [52] 钱方, 1999. 青藏高原晚新生代磁性地层研究. 地质力学学报, 5(4): 22-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX199904002.htm
      [53] 邵兆刚, 孟宪刚, 朱大岗, 等, 2005. 西藏阿里地区札达沉积盆地活动构造. 地质通报, 24(7): 625-629. doi: 10.3969/j.issn.1671-2552.2005.07.006
      [54] 邵兆刚, 孟宪刚, 杨朝斌, 等, 2006. 西藏阿里札达盆地的"翘板式"形成机制. 地质论评, 52(2): 215-218. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200602010.htm
      [55] 王国灿, 2002. 沉积物源区剥露历史分析的一种新途径——碎屑锆石和磷灰石裂变径迹热年代学. 地质科技情报, 21(4): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200204007.htm
      [56] 王津, 朱大岗, 孟宪刚, 等, 2006. 西藏札达盆地古格组剖面沉积环境演化特征. 中国地质, 33(5): 1005-1012. doi: 10.3969/j.issn.1000-3657.2006.05.008
      [57] 王世锋, 张伟林, 方小敏, 等, 2008b. 藏西南札达盆地磁性地层学特征及其构造意义. 科学通报, 53(6): 676-683. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200806013.htm
      [58] 王维亮, 张进江, 张波, 2004. 西藏札达盆地构造与沉积特征. 北京大学学报(自然科学报), 40(6): 872-878. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200406004.htm
      [59] 夏代祥, 刘世坤, 1997. 西藏自治区岩石地层. 武汉: 中国地质大学出版社, 239-240.
      [60] 张进江, 2007. 北喜马拉雅及藏南伸展构造综述. 地质通报, 26(6): 639-649. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200706003.htm
      [61] 张克信, 王国灿, 曹凯, 等, 2008. 青藏高原新生代主要隆升事件: 沉积响应与热年代学记录. 中国科学(D辑), 38(12): 1575-1588. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200812011.htm
      [62] 张青松, 王富葆, 计宏祥, 等, 1981. 西藏札达盆地的上新世地层. 地层学杂志, 5(3): 216-220. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ198103008.htm
      [63] 赵政章, 李永铁, 叶和飞, 等, 2001. 青藏高原地层. 北京: 科学出版社, 177-322.
      [64] 郑德文, 张培震, 万景林, 等, 2000. 碎屑颗粒热年代学——一种揭示盆山耦合过程的年代学方法. 地震地质, 22(B12): 25-36. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ2000S1005.htm
      [65] 周勇, 丁林, 邓万明, 等, 2000. 札达盆地构造旋回层及其地质意义. 地质科学, 35(3): 305-315. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200003005.htm
      [66] 朱大岗, 孟宪刚, 邵兆刚, 等, 2006. 西藏札达盆地形成演化与喜马拉雅山隆升. 地球学报, 27(3): 193-200. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200603000.htm
      [67] 朱大岗, 孟宪刚, 邵兆刚, 等, 2007. 西藏阿里札达盆地上新世-早更新世的古植被、古环境与古气候演化. 地质学报, 81(3): 295-307. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200703001.htm
    • 加载中
    图(7) / 表(2)
    计量
    • 文章访问数:  3118
    • HTML全文浏览量:  70
    • PDF下载量:  63
    • 被引次数: 0
    出版历程
    • 收稿日期:  2010-05-31
    • 刊出日期:  2010-09-01

    目录

      /

      返回文章
      返回