An Early Cenozoic Tectonic Event in Eastern Kunlun Orogen, Evidence from Detrital Fission Track Geochronology
-
摘要: 东昆仑造山带作为青藏高原北部地貌向北衰减的第一条构造地貌边界,其新生代构造过程是检验和揭示板块碰撞远程变形效应、机制及空间拓展过程的关键.基于东昆仑造山带系统的碎屑锆石裂变径迹测试分析,揭示东昆仑造山带新生代早期构造演化过程,为板块作用远程效应过程提供年代学证据.碎屑裂变径迹分析表明东昆仑造山带前新生代地层在埋藏后经历了古新世—始新世以前的差异性退火作用(约300~200℃),峰值年龄解析获得最年轻峰值年龄(P1)主体集中在42~59 Ma,代表了东昆仑造山带锆石裂变径迹差异性退火作用的结束年龄.区域性热历史重建及区域资料一致表明,古新世—始新世阶段,东昆仑造山带发生了区域性构造隆升作用,表明东昆仑造山带在印度欧亚板块碰撞后随即成为青藏高原岩石圈(地壳)变形的前缘,这进一步暗示了青藏高原岩石圈地壳变形具有明显的刚性块体特征,而现今地壳流动变形特征可能是地壳分层加厚、多圈层多机制共同作用的结果.Abstract: The eastern Kunlun Orogen,as a southernmost morphotectonic transition belt of northward attenuation in topographic relief across the northern Tibetan plateau,is a key area in examining and recovering the processing and mechanisms of the far-field lithospheric deformation. In this paper,we try to illustrate the Early Cenozoic tectonic processing in the eastern Kunlun Orogen based on a systematic detrital zircon fission track (ZFT) study. It is indicated that widely distributed pre-Cenozoic strata in the study area experienced a ZFT differential resetting (~300—200℃) at around Paleocene-Eocene postdating their burying. Binomial fitting for the single grain ages yielded youngest peak ages (P1) that mainly fall between 42—59 Ma,which corresponds to a ceasing timing for the differential resetting of detrital,Regional thermal history. Relevant data concordantly suggest that the eastern Kunlun Orogen experienced a regional tectonic uplift in Paleocene-Eocene,which coincides with the timing of the Indian-Asian collision,which implies that the Kunlun Orogen occurred as a deformation frontier instantly as the Indian plate collided with Asian plate. Our study provides an evidence that the Tibetan lithosphere (or curst) deformation at early stage is essentially of rigid plate,rather than the present day of significant continuous deformation,which might be a combined result by several mechanisms of lithospheric layers thickened respectively.
-
Key words:
- fission track /
- tectonic uplift /
- Cenozoic /
- eastern Kunlun Orogen
-
图 4 东昆仑造山带区域地层构造热历史
A.东昆仑断裂南侧巴颜喀拉构造单元P1年龄;B.东昆仑断裂与西大滩断裂之间的巴颜喀拉与阿尼玛卿构造单元(昆仑主脊)P1年龄;C.西大滩断裂以北昆南、昆北构造单元P1年龄;D.磷灰石裂变径迹年龄(据Wang et al., 2004;吴珍汉等,2005;王岸等,2007).图中以约200 Ma作为样品沉积年代,阴影条带分别代表碎屑锆石差异性退火温度与磷灰石裂变径迹封闭温度区间,虚线表示区域性构造热历史
Fig. 4. Regional thermal history of eastern Kunlun orogen
表 1 锆石裂变径迹样品及年龄测试结果
Table 1. ZFT samples and dating results
样号 经度 纬度 高程(m) 峰值年龄(Ma) 年龄(Ma) 岩性 YK4900 35°38.71′ 94°4.21′ 4 900 69.8±4.2(28)/152.9±19.2(5) 76.3±6.1(33) 变砂岩 YK4815 35°38.50′ 94°4.25′ 4 815 54.6±3.5(12)/74.9±4.5(20)/116.7±7.6(10) 74.9±5.1(42) 变砂岩 YK4665 35°41.03′ 94°2.91′ 4 665 46.9±3.0(13)/87.5±4.8(17) 64.8±5.6(31) 变砂岩 YK4515 35°41.91′ 94°16.68′ 4 515 21.6±1.9(5)/51.5±2.8(23)/95.9±6.3(8) 55.5±5.4(37) 变砂岩 YK4405 35°42.28′ 94°16.96′ 4 405 26.7±3.7(6)/37.1±5.3(12)/69.8±4.2(23) 50.4±4.1(41) 变砂岩 YK-3* 35°44.20′ 94°10.76′ 4 352 — 67.8±7.7(16) 二长花岗岩 YK4203 35°44.38′ 94°16.38′ 4 203 42.0±4.2(8)/85.2±5.4(11) 62.4±6.4(19) 变砂岩 YK4000 35°47.77′ 94°20.40′ 4 000 47.9±4.5(11)/89.4±6.3(12) 62.3±5.7(25) 变砂岩 YK3693 35°52.25′ 94°27.14′ 3 693 — 63.1±4.0(9) 花岗闪长岩 YK3501 35°54.12′ 94°37.79′ 3 501 35.0±3.4(6)/52.1±3.4(10)/72.8±4.4(13)/102.4±7.4(11) 65.6±5.2(40) 变砂岩 YK3418 35°54.71′ 94°46.32′ 3 418 58.9±3.8(12)/93.6±5.7(14) 71.2±6.2(27) 变砂岩 YK3335 35°58.27′ 94°49.04′ 3 335 53.5±3.8(5)/90.3±6.2(3) 64.1±7.5(8) 变砂岩 YK-4* 36°1.89′ 94°48.78′ 3 260 — 207.6±11.0(15) 闪长岩 YK3225 36°8.70′ 94°46.97′ 3 225 - 76.2±8.2(6/5/5) 二长花岗岩 YK3137 36°7.99′ 94°47.39′ 3 137 YK-5* 36°8.02′ 94°47.32′ 3 140 注:峰值年龄列由小到大列出了各峰值年龄,相应颗粒数列于年龄右侧,小于3个颗粒峰值未列入;年龄列中给出了碎屑类样品的中值年龄或侵入岩样品的池年龄及颗粒总数;侵入岩样品年龄计算方法依据卡方概率检验分别取池年龄(P(χ2)≥1%)或者中值年龄(P(χ2)<1%),年龄误差均为1σ;YK3225、YK3137和YK-5为同一岩体不同高程样品,因可分析颗粒较少而合并. -
[1] Bai, D.Y., Meng, D.B., Liu, Y.R., et al., 2003. Apatite fission-track records of the tectonic uplift of the central segment of the Kunlun Mountains on the northern margin of the Qinghai-Tibet plateau. Chinese Geology, 30(3): 240-246 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200303002.htm [2] Bernet, M., Garver, J.I., 2005. Fission-track analysis of detrital zircon. Reviews in Mineralogy and Geochemistry, 58(1): 205-237. doi: 10.2138/rmg.2005.58.8 [3] Brandon, M.T., 1992. Decomposition of fission-track grain-age distributions. American Journal of Science, 292: 535-564. doi: 10.2475/ajs.292.8.535 [4] Brandon, M.T., Vance, J.A., 1992. Tectonic evolution of the Cenozoic Olympic subduction complex, Washington State, as deduced from fission track ages for detrital zircons. American Journal of Science, 292: 565-636. doi: 10.2475/ajs.292.8.565 [5] Dai, S., Fang, X.M., Song, C.H., et al., 2005. Early stage tectonic uplift of the northern Tibetan plateau. Chinese Science Bulletin, 50(7): 673-683 (in Chinese). doi: 10.1360/csb2005-50-7-673 [6] Dayem, K.E., Molnar, P., Clark, M.K., et al., 2009. Far-field lithospheric deformation in Tibet during continental collision. Tectonics, 28, TC6005. doi: 10.1029/2008TC002344 [7] England, P.C., Houseman, G.A., Osmaston, M.F., et al., 1988. The mechanics of the Tibetan plateau. Philosophical Transactions of the Royal Society of London (Series A), 326(1589): 301-320. [8] Fang, X.M., Zhang, W.L., Meng, Q.Q., et al., 2007. High-resolution magnetostratigraphy of the Neogene Huaitoutala Section in the eastern Qaidam basin on the NE Tibetan plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan plateau. Earth and Planetary Science Letters, 258(1-2): 293-306. doi: 10.1016/j.epsl.2007.03.042 [9] Galbraith, R.F., Green, P.F., 1990. Estimating the component ages in a finite mixture. International Journal of Radiation Applications and Instrumentation (Part D), 17(3): 197-206. http://www.sciencedirect.com/science/article/pii/135901899090035V [10] Garver, J.I., Kamp, P.J.J., 2002. Integration of zircon color and zircon fission-track zonation patterns in orogenic belts: application to the southern Alps, New Zealand. Tectonophysics, 349(1-4): 203-219. doi: 10.1016/S0040-195(02)00054-9 [11] Garver, J.I., Reiners, P.W., Walker, L.J., et al., 2005. Implications for timing of Andean uplift from thermal resetting of radiation-damaged zircon in the Cordillera Huayhuash, northern Peru. Journal of Geology, 113: 117-138. doi: 10.1086/427664 [12] Gleadow, A.J., Duddy, I.R., 1981. A natural long-term track annealing experiment for apatite. Nuclear Tracks, 5(1-2): 169-174. doi: 10.1016/0191-278X(81)90039-1 [13] Green, P.F., Duddy, I.R., Gleadow, A.J., et al., 1986. Thermal annealing of fission tracks in apatite: 1. A qualitative description. Chemical Geology: Isotope Geoscience Section, 59(4): 237-253. doi: 10.1016/0168-9622(86)90074-6 [14] Jade, S., Bhatt, B.C., Yang, Z., et al., 2004. GPS measurements from the Ladakh Himalaya, India: preliminary tests of plate-like or continuous deformation in Tibet. GSA Bulletin, 116(11-12): 1385-1391. doi: 10.1130/B25357.1 [15] Kasuya, M., Naeser, C.W., 1988. The effect of alpha-damage on fission-track annealing in zircon. Nuclear Tracks and Radiation Measurements, 14(4): 477-480. doi: 10.1016/1359-0189(88)90008-8 [16] Li, D.W., 2003. A new model for uplifting mechanism of Qinghai-Tibet plateau. Earth Science—Journal of China University of Geosciences, 28(6): 593-600 (in Chinese with English abstract). [17] Li, D.W., Zhuang, Y.X., 2006. Scientific problems of continental dynamics in the Qinghai-Tibet plateau. Geological Science and Technology Information, 25(2): 1-10, 18 (in Chinese with English abstract). [18] Li, H.B., Yang, J.S., 2004. Evidence for Cretaceous uplift of the northern Qinghai-Tibetan plateau. Earth Science Frontiers, 11(4): 345-359 (in Chinese with English abstract). [19] Li, J.J., Fang, X.M., Pan, B.T., et al., 2001. Late Cenozoic intensive uplift of Qinghai-Xizang plateau and its impacts on environments in surrounding area. Quaternary Sciences, 21(5): 381-391 (in Chinese with English abstract). http://www.researchgate.net/publication/284098400_Late_Cenozoic_intensive_uplift_of_Qinghai-Xizang_Plateau_and_its_impacts_on_environments_in_surrounding_area [20] Lin, A.M., Fu, B.H., Guo, J.M., et al., 2002. Co-seismic strike-slip and rupture length produced by the 2001 MS 8.1 Central Kunlun earthquake. Science, 296(5575): 2015-2017. doi: 10.1126/science.1070879 [21] Lin, D., Kapp, P., Xiao, Q.W., 2005. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, South Central Tibet. Tectonics, 24(3). doi: 10.1029/2004TC001729 [22] Mock, C., Arnaud, N.O., Cantagrel, J.M., 1999. An early unroofing in northeastern Tibet? Constraints from 40Ar/39Ar thermochronology on granitoids from the eastern Kunlun range (Qianghai, NW China). Earth and Planetary Science Letters, 171(1): 107-122. doi: 10.1016/S0012-821X(99)00133-8 [23] Rahn, M.K., Brandon, M.T., Batt, G.E., et al., 2004. A zero-damage model for fission-track annealing in zircon. American Mineralogist, 89(4): 473-484. doi: 10.2138/am-2004-0401 [24] Rowley, D.B., 1998. Minimum age of initiation of collision between India and Asia north of Everest based on the subsidence history of the Zhepure Mountain Section. Journal of Geology, 106: 229-235. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=420038&site=ehost-live [25] Spiegel, C., Kohn, B., Raza, A., et al., 2007. The effect of long-term low-temperature exposure on apatite fission track stability: a natural annealing experiment in the deep ocean. Geochimica et Cosmochimica Acta, 71(18): 4512-4537. doi: 10.1016/j.gca.2007.06.060 [26] Tapponnier, P., Molnar, P., 1976. Slip-line field theory and large-scale continental tectonics. Nature, 264(5584): 319-324. doi: 10.1038/264319a0 [27] Tapponnier, P., Xu, Z.Q., Roger, F., et al., 2001. Oblique stepwise rise and growth of the Tibet plateau. Science, 294(5547): 1671-1677. doi: 10.1126/science.105978 [28] Wang, A., Wang, G.C., Xie, D.F., et al., 2007. Fission track geochronology of Xiaonanchuan pluton and the morphotectonic evolution of eastern Kunlun since Late Miocene. Earth Science—Journal of China University of Geosciences, 32(1): 51-58 (in Chinese with English abstract). [29] Wang, A., Wang, G.C., Li, D.W., et al., 2009a. Tectonic landform of Quaternary lakes and its implications for deformation in the northern Qinghai-Tibet plateau. Acta Geologica Sinica, 83 (1): 121-129. doi: 10.1111/j.1755-6724.2009.00014.x [30] Wang, A., Wang, G.C., Zhang, K.X., et al., 2009b. Late Neogene mountain building of eastern Kunlun orogen: constrained by DEM analysis. Journal of Earth Science, 20(2): 391-400. doi: 10.1007/s12583-009-0032-1 [31] Wang, C.Y., Lou, H., Lü, Z.Y., et al., 2008. S-wave crustal and upper mantle's velocity structure in the eastern Tibetan plateau—deep environment of lower crustal flow. Science in China (Ser. D), 38(1): 22-32 (in Chinese). [32] Wang, E.Q., 1997. Displacement and timing along the northern strand of the Altyn Tagh fault zone, northern Tibet. Earth and Planetary Science Letters, 150(1-2): 55-64. doi: 10.1016/S0012-821X(97)00085-X [33] Wang, F., Lo, C.H., Li, Q., et al., 2004. Onset timing of significant unroofing around Qaidam basin, northern Tibet, China: constraints from 40Ar/39Ar and FT thermochronology on granitoids. Journal of Asian Earth Science, 24(1): 59-69. doi: 10.1016/j.jseaes.2003.07.004 [34] Wang, G.C., Xiang, S.Y., Garver, J.I., et al., 2003. Uplift and exhumation during Mesozoic in Halaguole-Hatu area, east segment of eastern Kunlun Mountains: evidence from zircon and apatite fission-track ages. Earth Science—Journal of China University of Geosciences, 28(6): 645-652 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200306010.htm [35] Wang, G.C., Xiang, S.Y., Wang, A., et al., 2007. Thermochronological constraint to the processes of the East Kunlun and adjacent areas in Mesozoic-Early Cenozoic. Earth Science—Journal of China University of Geosciences, 32(5): 605-614, 680 (in Chinese with English abstract). [36] Wang, Q.L., Wang, J.H., Zhu, G.Z., et al., 2004. Vertical deformations of the eastern Kunlun fault zone and west of Kunlun Mountain pass MS 8.1 earthquake. Seismology and Geology, 26(2): 273-280 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZDZ200402008.htm [37] Wang, Q., Zhang, P.Z., Freymueller, J.T., et al., 2001. Present-day crustal deformation in China constrained by global positioning system measurements. Science, 294(5542): 574-577. doi: 10.1126/science.1063647 [38] Wu, Z.H., Hu, D.G., Song, B., et al., 2005. Ages and thermo-chronological evolution of the North Xidatan granite in the South Kunlun Mts. Acta Geologica Sinica, 79(5): 628-635 (in Chinese with English abstract). http://www.researchgate.net/publication/279675807_Ages_and_thermo-chronological_evolution_of_the_north_Xidatan_granite_in_the_South_Kunlun_Mts [39] Xiang, S.Y., Wang, G.C., Deng, Z.L., 2003. Deposit response to important tectonic events of Cenozoic plateau uplift, east segment of eastern Kunlun Mountains. Earth Science—Journal of China University of Geosciences, 28(6): 615-620 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200306005.htm [40] Xu, Z.Q., Yang, J.S., Qi, X.X., et al., 2006. India-Asia collision: a further discussion of N-S- and E-W-trending detachments and the orogenic mechanism of the modern Himalayas. Geological Bulletin of China, 25(1-2): 1-14 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=ZQYD2006Z1003&dbcode=CJFD&year=2006&dflag=pdfdown [41] Yin, A., Dang, Y.Q., Chen, X.H., et al., 2007. Cenozoic evolution and tectonic reconstruction of the Qaidam basin: evidence from seismic profiles. Journal of Geomechanics, 13(3): 193-211 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX200703000.htm [42] Yin, H.F., Zhang, K.X., 1997. Characteristics of the eastern Kunlun orogenic belt. Earth Science—Journal of China University of Geosciences, 22(4): 339-342 (in Chinese with English abstract). [43] Yu, S.L., Ji, J.Q., Chen, J.J., et al., 2006. Lower crust flow and large-scale geomorphy of Qinghai-Tibet plateau. Geological Science and Technology Information, 25(5): 1-7, 20 (in Chinese with English abstract). [44] Yuan, W.M., Zhang, X.T., Dong, J.Q., et al., 2004. Apatite fission track evidence on the uplifting of eastern Kunlun Mountains. Atomic Energy Science and Technology, 38(2): 166-168 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YZJS200402016.htm [45] Yuan, W.M., Dong, J.Q., Wang, S.C., et al., 2006. Apatite fission track evidence for Neogene uplift in the eastern Kunlun Mountains, northern Qinghai-Tibet plateau, China. Journal of Asian Earth Sciences, 27(6): 847-856. doi: 10.1016/j.jseaes.2005.09.002 [46] Zhang, K.X., Wang, G.C., Chen, F.N., et al., 2007. Coupling between the uplift of Qinghai-Tibet plateau and distribution of basins of Paleogene-Neogene. Earth Science—Journal of China University of Geosciences, 32(5): 583-597 (in Chinese with English abstract). [47] Zhang, K.X., Wang, G.C., Ji, J.L., et al., 2010. Paleogene-Neogene stratigraphic realm and sedimentary sequence of the Qinghai-Tibet Plateau and their response to uplift of the plateau. Science in China (Earth Sciences), 53(9): 1271-1294. doi: 10.1007/s11430-010-4048-2. [48] Zhang, P.Z., Wang, Q., Ma, Z.J., 2002. GPS velocity field and active crustal deformation in and around the Qinghai-Tibet plateau. Earth Science Frontiers, 9(2): 442-450 (in Chinese with English abstract). [49] Zhang, P.Z., Shen, Z., Wang, M., et al., 2004. Continuous deformation of the Tibetan plateau from global positioning system data. Geology, 32(9): 809-812. doi: 10.1130/G20554.1 [50] Zheng, D.W., Zhang, P.Z., Wan, J.L., et al., 2003. Late Cenozoic deformation subsequence in northeastern margin of Tibet—detrital AFT records from Linxia basin. Science in China (Ser. D), 33(Suppl. ): 190-198 (in Chinese). [51] Zhong, D.L., Ding, L., 1996. Rising process of the Qinghai-Xizang (Tibet) plateau and its mechanism. Science in China (Ser. D), 26(4): 289-295 (in Chinese). [52] Zhu, B., Kidd, W.S.F., Rowley, D.B., et al., 2005. Age of initiation of the India-Asia collision in the East-Central Himalaya. Journal of Geology, 113(3): 265-285. doi: 10.1086/428805 [53] 柏道远, 孟德保, 刘耀荣, 等, 2003. 青藏高原北缘昆仑山中段构造隆升的磷灰石裂变径迹记录. 中国地质, 30(3): 240-246. doi: 10.3969/j.issn.1000-3657.2003.03.003 [54] 戴霜, 方小敏, 宋春晖, 等, 2005. 青藏高原北部的早期隆升. 科学通报, 50(7): 673-683. doi: 10.3321/j.issn:0023-074X.2005.07.011 [55] 李德威, 2003. 青藏高原隆升机制新模式. 地球科学——中国地质大学学报, 28(6): 593-600. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200306002.htm [56] 李德威, 庄育勋, 2006. 青藏高原大陆动力学的科学问题. 地质科技情报, 25(2): 1-10, 18. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200602000.htm [57] 李海兵, 杨经绥, 2004. 青藏高原北部白垩纪隆升的证据. 地学前缘, 11(4): 345-359. doi: 10.3321/j.issn:1005-2321.2004.04.002 [58] 李吉均, 方小敏, 潘保田, 等, 2001. 新生代晚期青藏高原强烈隆起及其对周边环境的影响. 第四纪研究, 21(5): 381-391. doi: 10.3321/j.issn:1001-7410.2001.05.001 [59] 王岸, 王国灿, 谢德凡, 等, 2007. 东昆仑山小南川岩体裂变径迹年代与中新世晚期以来的构造地貌演化. 地球科学——中国地质大学学报, 32(1): 51-58. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200701006.htm [60] 王椿镛, 楼海, 吕智勇, 等, 2008. 青藏高原东部地壳上地幔S波速度结构——下地壳流的深部环境. 中国科学(D辑), 38(1): 22-32. doi: 10.3321/j.issn:1006-9267.2008.01.003 [61] 王国灿, 向树元, Garver, J.I., 等, 2003. 东昆仑东段哈拉郭勒—哈图一带中生代的岩石隆升剥露——锆石和磷灰石裂变径迹年代学证据. 地球科学——中国地质大学学报, 28(6): 645-652. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200306010.htm [62] 王国灿, 向树元, 王岸, 等, 2007. 东昆仑及相邻地区中生代—新生代早期构造过程的热年代学记录. 地球科学——中国地质大学学报, 32(5): 605-614, 680. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200705005.htm [63] 王庆良, 王建华, 朱桂芝, 等, 2004. 东昆仑山断裂带及昆仑山口西8.1级地震垂直形变研究. 地震地质, 26(2): 273-280. doi: 10.3969/j.issn.0253-4967.2004.02.009 [64] 吴珍汉, 胡道功, 宋彪, 等, 2005. 昆仑山南部西大滩盆北花岗岩的年龄与热历史. 地质学报, 79(5): 628-635. doi: 10.3321/j.issn:0001-5717.2005.05.007 [65] 向树元, 王国灿, 邓中林, 2003. 东昆仑东段新生代高原隆升重大事件的沉积响应. 地球科学——中国地质大学学报, 28(6): 615-620. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200306005.htm [66] 许志琴, 杨经绥, 戚学祥, 等, 2006. 印度/亚洲碰撞——南北向和东西向拆离构造与现代喜马拉雅造山机制再讨论. 地质通报, 25(1-2): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2006Z1003.htm [67] 尹安, 党玉琪, 陈宣华, 等, 2007. 柴达木盆地新生代演化及其构造重建——基于地震剖面的解释. 地质力学学报, 13(3): 193-211. doi: 10.3969/j.issn.1006-6616.2007.03.001 [68] 殷鸿福, 张克信, 1997. 东昆仑造山带的一些特点. 地球科学——中国地质大学学报, 22(4): 339-342. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX704.000.htm [69] 余绍立, 季建清, 陈建军, 等, 2006. 下地壳流变层对青藏高原及其周边大尺度地貌的制约. 地质科技情报, 25(5): 1-7, 20. doi: 10.3969/j.issn.1000-7849.2006.05.001 [70] 袁万明, 张雪亭, 董金泉, 等, 2004. 东昆仑隆升作用的裂变径迹研究. 原子能科学技术, 38(2): 166-168. doi: 10.3969/j.issn.1000-6931.2004.02.015 [71] 张克信, 王国灿, 陈奋宁, 等, 2007. 青藏高原古近纪—新近纪隆升与沉积盆地分布耦合. 地球科学——中国地质大学学报, 32(5): 583-597. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200705002.htm [72] 张培震, 王琪, 马宗晋, 2002. 青藏高原现今构造变形特征与GPS速度场. 地学前缘, 9(2): 442-450. doi: 10.3321/j.issn:1005-2321.2002.02.023 [73] 郑德文, 张培震, 万景林, 等, 2003. 青藏高原东北边缘晚新生代构造变形的时序——临夏盆地碎屑颗粒磷灰石裂变径迹记录. 中国科学(D辑), 33(增刊): 190-198. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1020.htm [74] 钟大赉, 丁林, 1996. 青藏高原的隆起过程及其机制探讨. 中国科学(D辑), 26(4): 289-295. doi: 10.3321/j.issn:1006-9267.1996.04.001