• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    泥浆侵入二维数值模拟

    常文会 潘和平 周峰

    常文会, 潘和平, 周峰, 2010. 泥浆侵入二维数值模拟. 地球科学, 35(4): 674-680. doi: 10.3799/dqkx.2010.082
    引用本文: 常文会, 潘和平, 周峰, 2010. 泥浆侵入二维数值模拟. 地球科学, 35(4): 674-680. doi: 10.3799/dqkx.2010.082
    CHANG Wen-hui, PAN He-ping, ZHOU Feng, 2010. Two-Dimensional Numerical Simulation of Mud Invasion. Earth Science, 35(4): 674-680. doi: 10.3799/dqkx.2010.082
    Citation: CHANG Wen-hui, PAN He-ping, ZHOU Feng, 2010. Two-Dimensional Numerical Simulation of Mud Invasion. Earth Science, 35(4): 674-680. doi: 10.3799/dqkx.2010.082

    泥浆侵入二维数值模拟

    doi: 10.3799/dqkx.2010.082
    基金项目: 

    中石化华北石油局项目 kh096069

    详细信息
      作者简介:

      常文会(1966-), 高级工程师, 博士研究生

      通讯作者:

      潘和平, Email: panpinge@163.com

    • 中图分类号: P631.8

    Two-Dimensional Numerical Simulation of Mud Invasion

    • 摘要: 石油钻井中由于井底压力略大于地层压力, 使得钻井泥浆侵入到原始地层中, 改变地层的电阻率, 影响了电阻率测井的准确性.以油水两相流的渗流方程、对流扩散方程和阿尔奇公式为理论模型, 采用有限差分方法对泥浆侵入过程进行二维数值离散, 针对麻黄山西探区储层实际情况输入模型中有关参数, 分别对侵入时间24 h和48 h, 解得给定侵入时刻储层的压力、含水饱和度、地层水矿化度和电阻率在垂向和径向的分布, 计算结果与实际情况相符, 可用其对实际电阻率测井值进行校正.通过一个低侵算例验证, 结果与理论分析相符合, 因此该方法可以用于垂向上非均匀储层的泥浆侵入计算.

       

    • 图  1  侵入24 h的压力、矿化度、含水饱和度和电阻率径向分布

      Fig.  1.  Pressure, salinity, water saturation and resistivity distribution in 2 dimension and 1 dimension after invasion of 24 hours

      图  2  侵入48 h的压力、矿化度、含水饱和度和电阻率径向分布

      Fig.  2.  Pressure, salinity, water saturation and resistivity distribution in 2 dimension and 1 dimension after invasion of 48 hours

      图  3  一维含水饱和度、压力、矿化度和电阻率分布(Navarro, 2007)

      Fig.  3.  Pressure, water saturation, salinity and resistivity distribution in 1 dimension

    • [1] Donaldson, E.C., Chernoglazov, V., 1987. Characterization of drilling mud fluid invasion. Journal of Petroleum Science and Engineering, 1(1): 3-13. doi: 10.1016/0920-4150(87)90010-6
      [2] Dresser Atlas Inc., 1982. Well logging and interpretation techniques. Dresser Industries, USA.
      [3] Dubost, F.X., Zheng, S.Y., Corbett, P.W.M., 2004. Analysis and numerical modelling of wireline pressure tests in thin-bedded turbidites. Journal of Petroleum Science and Engineering, 45(3-4): 247-261. doi: 10.1016/i.petrol.2004.07.001
      [4] Goode, P.A., Thambynayagam, R.K.M., 1996. Influence of an invaded zone on a multiprobe formation tester. SPE Formation Evaluation, 11(1): 31-40. doi: 10.2118/23030-PA
      [5] Han, D.K., Chen, Q.L., Yan, C.Z., 1993. Basic theory of oil reservoir numerical simulation. Petroleum Industry Press, Beijing, 147-179 (in Chinese).
      [6] Kuchuk, F.J., Onur, M., 2003. Estimating permeability distribution from 3D interval pressure transient tests. Journal of Petroleum Science and Engineering, 39(1-2): 5-27. doi: 10.1016/s0920-4105(03)00037-8
      [7] Lake, L.W., 1989. Enhanced oil recovery. Prentice-Hall Inc., New Jersey, USA.
      [8] Liu, Z.H., Hu, Q., Zhang, J.H., 1996. Response characteristics of time-lapse dual laterolog and their variations. Oil Geophysical Prospecting, 31(4): 535-540 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDQ199604008.htm
      [9] Ma, M.X., Ju, B.S., 2004. A novel mathematical model to calculate distribution of mud invasion formation resistivity. Well Logging Technology, 28(6): 503-507 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJJS200406009.htm
      [10] Navarro, D., 2007. Effects of invasion transient on resistivity time-lapsed logging. In: Department of electrical and computer engineering 3rd annual ECE graduate research conference, 74-75.
      [11] Schlumberger, C., Schlumberger, M., Leonardon, E.G., 1934. Electrical coring: a method of determining bottom-hole data by electrical measurements. Trans., AIME., 110: 237-272. doi: 10.2118/934237-G
      [12] Sun, J.M., Zhang, H.T., Ma, J.H., et al., 2003. On a new method for calculating in-situ water saturation with time-lapse log. Well Logging Technology, 27(3): 217-220 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJJS200303011.htm
      [13] Tan, T.D., 1979. Resistirity time-lapse logging. Well Logging Technology, 3(6): 1-8 (in Chinese).
      [14] Wu, J.H., Torres-Verdín, C., Proett, M., et al., 2002. Inversion of multi-phase petrophysical properties using pumpout sampling data acquired with a wireline formation tester. Paper SPE 77345 presented at the Annual Technical Conference and Exhibition, San Antonio, Texas, 29 September—2 October.
      [15] Zhang, J.H., Hu, Q., Liu, Z.H., 1994. A theoretical model for mud-filtrate invasion in reservoir formations during drilling. Acta Petrolei Sinica, 15(4): 73-78 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB404.009.htm
      [16] Zhang, L.H., 2005. Basic theory of oil reservoir numerical simulation. Petroleum Industry Press, Beijing, 100-101 (in Chinese).
      [17] 韩大匡, 陈钦雷, 闫存章, 1993. 油藏数值模拟基础. 北京: 石油工业出版社, 147-179.
      [18] 刘振华, 胡启, 张建华, 1996. 时间推移双侧向测井响应特征及其变化规律. 石油地球物理勘探, 31(4): 535-540. doi: 10.3321/j.issn:1000-7210.1996.04.010
      [19] 马明学, 鞠斌山, 2004. 一种新的计算泥浆侵入储层电阻率分布的数学模型. 测井技术, 28(6): 503-507. doi: 10.3969/j.issn.1004-1338.2004.06.009
      [20] 孙建孟, 张海涛, 马建海, 等, 2003. 用时间推移测井计算原始含水饱和度新方法研究. 测井技术, 27(3): 217-220. doi: 10.3969/j.issn.1004-1338.2003.03.010
      [21] 谭廷栋, 1979. 电阻率时间推移测井. 测井技术, 3(6): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS197906000.htm
      [22] 张建华, 胡启, 刘振华, 1994. 钻井泥浆滤液侵入储集层的理论计算模型. 石油学报, 15(4): 73-78. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB404.009.htm
      [23] 张烈辉, 2005. 油气藏数值模拟基本原理. 北京: 石油工业出版社, 100-101.
    • 加载中
    图(3)
    计量
    • 文章访问数:  2704
    • HTML全文浏览量:  106
    • PDF下载量:  82
    • 被引次数: 0
    出版历程
    • 收稿日期:  2009-11-26
    • 刊出日期:  2010-07-01

    目录

      /

      返回文章
      返回