• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    塔里木盆地中央隆起区现今地温场分布特征及其与油气的关系

    冯昌格 刘绍文 王良书 李成

    冯昌格, 刘绍文, 王良书, 李成, 2010. 塔里木盆地中央隆起区现今地温场分布特征及其与油气的关系. 地球科学, 35(4): 645-656. doi: 10.3799/dqkx.2010.079
    引用本文: 冯昌格, 刘绍文, 王良书, 李成, 2010. 塔里木盆地中央隆起区现今地温场分布特征及其与油气的关系. 地球科学, 35(4): 645-656. doi: 10.3799/dqkx.2010.079
    FENG Chang-ge, LIU Shao-wen, WANG Liang-shu, LI Cheng, 2010. Present-Day Geotemperature Field Characteristics in the Central Uplift Area of the Tarim Basin and Implications for Hydrocarbon Generation and Preservation. Earth Science, 35(4): 645-656. doi: 10.3799/dqkx.2010.079
    Citation: FENG Chang-ge, LIU Shao-wen, WANG Liang-shu, LI Cheng, 2010. Present-Day Geotemperature Field Characteristics in the Central Uplift Area of the Tarim Basin and Implications for Hydrocarbon Generation and Preservation. Earth Science, 35(4): 645-656. doi: 10.3799/dqkx.2010.079

    塔里木盆地中央隆起区现今地温场分布特征及其与油气的关系

    doi: 10.3799/dqkx.2010.079
    基金项目: 

    国家自然科学基金 40504013

    国家自然科学基金 40634021

    中国石油中青年创新基金 07E1033

    高等学校博士点基金项目 20060284040

    详细信息
      作者简介:

      冯昌格(1981-), 男, 博士研究生, 主要从事地热和岩石圈热结构方面的研究

      通讯作者:

      刘绍文, E-mail: shaowliu@nju.edu.cn

    • 中图分类号: P314

    Present-Day Geotemperature Field Characteristics in the Central Uplift Area of the Tarim Basin and Implications for Hydrocarbon Generation and Preservation

    • 摘要: 沉积盆地热状态研究不仅对于理解盆地成因演化具有重要意义, 而且还与油气生成和保存息息相关.根据塔里木盆地中央隆起区近120口钻井的试油温度资料和296块岩石热导率的测试结果, 获得了该区现今地温梯度、深部温度(1 000~5 000 m埋深及烃源岩顶界面)及大地热流的分布特征.结果表明, 该区热状态整体偏低(平均地温梯度为23.3 ℃/km, 平均大地热流为47.3 mW/m2), 二叠纪的岩浆活动对现今地温场已无影响.不同埋深的地层温度表现出与地温梯度及大地热流相似的分布模式, 即隆起区高、凹陷区低, 这一展布特征受基底起伏和形态控制.烃源岩顶部温度表明, 巴楚组、卡拉沙依组和良立塔格组等烃源岩层目前仍处于油气的有利保存状态; 巴楚隆起、卡塔克隆起西北部和古城墟隆起东部的中下寒武统烃源岩则处于良好的油气保存状态, 其他地区处于不利的油气保存状态.特别是, 该区已探明的油气田往往位于相对高温区, 并提出深部热流体的向上运移和聚集过程可能是造成异常高温的因素.这一发现表明盆地现今地温场特征与油气田分布具有良好的对应关系, 可为今后油气勘探提供地热学依据.

       

    • 图  1  塔里木盆地中央隆起区构造区划

      Fig.  1.  Tectonic sketch showing subdivision of the central uplift area in Tarim basin

      图  2  中央隆起区各类温度与深度关系

      线性温度为系统连续测温数据;散点为试油静温数据

      Fig.  2.  Relationship between temperature data of different types and depth in the central uplift area

      图  3  塔里木盆地中央隆起区现今地温梯度等值线(单位:℃/km)

      Fig.  3.  Present-day geotemperature gradient contour map in the central uplift of the Tarim basin

      图  4  中央隆起区1 000 m (a)和5 000 m (b)深度地温等值线(单位:℃)

      Fig.  4.  Contour map of subsurface temperature at 1 000 m (a) and 5 000 m (b) depth in the central uplift area

      图  5  卡拉沙依组(a)和良立塔格组(b)顶面地温等值线(单位:℃)

      Fig.  5.  Contour map of subsurface temperature on the top surface of the Kalashayi Formation (a) and the Lianglitage Formation (b)

      图  6  中寒武统顶面(a)和下寒武统顶面(b)地温等值线(单位:℃)

      Fig.  6.  Contour map of subsurface temperature on the top surface of the Middle Cambrian (a) and the Lower Cambrian (b)

      图  7  中央隆起区的现今大地热流等值线(单位:mW/m2)

      Fig.  7.  Contour map of terrestrial heat flow in the central uplift area of the Tarim basin

      表  1  中央隆起区的岩石热导率统计

      Table  1.   Compilation of thermal conductivity of rocks in the central uplift area

      地层 岩性 数目 均值±标准偏差(W/m·K)   地层 岩性 数目 均值±标准偏差(W/m·K)
      N 泥岩* 31 1.778±0.372   C 灰岩 27 2.246±0.528
      N 砂岩* 55 1.680±0.618 C 白云岩 2 2.311±0.713
      E 泥岩* 17 1.883±0.447 C 砾岩 1 3.832
      E 砂岩* 41 1.961±0.522 D 泥岩 1 2.721
      K 泥岩 2 2.229±0.088 D 砂岩 9 3.015±0.626
      K 砂岩* 45 1.565±0.662 S 泥岩 17 2.212±0.356
      T 泥岩* 14 1.934±0.481 S 砂岩 27 3.051±0.563
      T 砂岩 3 1.411±0.54 S 砾岩 2 2.042±0.763
      T 灰岩 2 3.013±0.283 S 玄武岩 1 1.572
      P 泥岩 6 1.958±0.520 O 泥岩 9 2.410±0.687
      P 砂岩 14 1.880±0.548 O 砂岩 1 4.911
      P 灰岩 1 2.173 O 灰岩 61 2.797±0.771
      P 砾岩 3 1.018±0.135 O 白云岩 14 3.532±0.817
      P 火山角砾岩 1 1.780 泥岩 4 4.199±0.061
      P 凝灰岩 1 1.471 灰岩 2 3.744±1.044
      P 玄武岩 2 1.344±0.074 白云岩 21 4.031±0.464
      C 泥岩 38 2.183±0.454 Z 花岗闪长岩 3 2.215±0.190
      C 砂岩 19 2.533±0.727 Z 英安岩 2 2.215±0.060
      *者为统计的塔里木全盆地的结果.
      下载: 导出CSV

      表  2  塔中隆起区实测大地热流数据

      Table  2.   Newly retrieved heat flow data in the central uplift area of the Tarim basin

      序号 井名 经度 纬度 深度范围(m) 地温梯度(℃/km) 热导率(W/m·K) 热流(mW/m2)
      均值±标准偏差 相关系数
      1 巴探2 78°03′16″ 39°26′21″ 100~2 550 23.5±0.57 0.999 1.841 43.3
      2 巴探3 78°02′50″ 39°26′38″ 100~2 350 21.8±1.17 0.997 1.981 43.2
      3 塘北2 82°14′45″ 38°35′51″ 300~4 900 19.8±1.17 0.999 2.000 39.6
      4 中4 84°22′47″ 38°37′14″ 1 900~6 080 20.2±1.55 0.998 2.773 56.0
      5 塔中1 83°55′41″ 38°48′39″ 5 000~6 370 16.6±0.36 0.999 3.798 63.0
      下载: 导出CSV
    • [1] Allen, P.A., Allen, J.R., 2005. Basin analysis: principles and applications (2nd edition). Blackwell Publishing, Oxford.
      [2] Barker, C., 1996. Thermal modeling of petroleum generation: theory and applications. Elsevier Science, New York.
      [3] Bullard, E.C., 1939. Heat flow in South Africa. Proceedings of the Royal Society of London (Ser. A), 173955: 474-502. http://gji.oxfordjournals.org/external-ref?access_num=10.1098/rspa.1939.0159&link_type=DOI
      [4] Chen, Z.H., Osadetz, K.G., Issler, D.R., et al., 2008. Hydrocarbon migration detected by regional temperature field variations, Beaufort-Mackenzie basin, Canada. AAPG Bulletin, 92(12): 1639-1653. doi: 10.1306/07300808011
      [5] Doré, A.G., Auguston, J.H., Hermanrud, C., et al., 1993. Basin modeling: advances and applications. Norwegian Petroleum Society Special Publication, No. 3. Elsevier, New York.
      [6] Förster, A., Merriam, D.F., 1999. Geothermics in basin analysis. Kluwer/Plenum Publishers, New York.
      [7] Gong, Y.L., Wang, L.S., Liu, S.W., et al., 2003a. Distribution characteristics of geotemperature field in Jiyang depression, Shandong, North China. Chinese Journal of Geophysics, 46(5): 652-658 (in Chinese with English abstract). http://manu39.magtech.com.cn/Geophy/CN/article/downloadArticleFile.do?attachType=PDF&id=500
      [8] Gong, Y.L., Wang, L.S., Liu, S.W., et al., 2003b. Distribution characteristics of terrestrial heat flow densitiy in Jiyang depression of Shengli oilfield, East China. Science in China (Series D), 33(4): 384-391 (in Chinese). http://earth.scichina.com:8080/sciDe/EN/article/downloadArticleFile.do?attachType=PDF&id=306912
      [9] He, Z.L., Chen, Q.L., Qian, Y.X., et al., 2006. Hydrocarbon exploration targets in central uplift area of Tarim basin. Oil & Gas Geology, 27(6): 769-778 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200606008.htm
      [10] Jia, C.Z., ed., 1997. Structural characteristics and hydrocarbon in Tarim basin of China. Petroleum Industry Press, Beijing (in Chinese).
      [11] Li, H.L., Qiu, N.S., Jin, Z.J., et al., 2004. Study on thermal history of Tazhong area, Tarim basin. Journal of Xi'an Shiyou University (Natural Science Edition), 19 (4): 36-39, Ⅵ (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XASY200404008.htm
      [12] Li, P.L., 2007. Potential areas and exploration direction in the central uplift belt of the Tarim basin. Oil & Gas Geology, 28(5): 576-583, 589 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200705008.htm
      [13] Li, S.M., Pang, X.Q., Yang, H.J., et al., 2008. Characteristics and genetic type of the oils in the Tazhong uplift. Earth Science—Journal of China University of Geosciences, 33(5): 635-642 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.078
      [14] McGee, H.W., Meyer, H.J., Pringle, T.R., 1989. Shallow geothermal anomalies overlying deeper oil and gas deposits in Rocky mountain region. AAPG Bulletin, 73(5): 576-597. http://aapgbull.geoscienceworld.org/content/73/5/576
      [15] Meyer, H.J., McGee, H.W., 1985. Oil and gas fields accompanied by geothermal anomalies in Rocky mountain region. AAPG Bulletin, 69(6): 933-945. http://www.researchgate.net/publication/255004655_Oil_and_gas_fields_accompanied_by_geothermal_anomalies_in_Rocky_Mountain_Region
      [16] Popov, Y.A., Pribnow, D.F.C., Sass, J.H., et al., 1999. Characterization of rock thermal conductivity by high-resolution optical scanning. Geothermics, 28(2): 253-276. doi: 10.1016/s0375-6505(99)00007-3
      [17] Qiu, N.S., 2002. Characters of thermal conductivity and radiogenic heat production rate in basins of Northwest China. Chinese Journal of Geology, 37(2): 196-206 (in Chinese with English abstract).
      [18] Qiu, N.S., 2003. Geothermal regime in the Qaidam basin, northeast Qinghai-Tibet Plateau. Geological Magazine, 140(6): 707-719. doi: 10.1017/S0016756803008136
      [19] Qiu, N, S., Jin, Z.J., Wang, F.Y., 1997. The effect of the complex geothermal field based on the multi-structure evolution to hydrocarbon generation—a case of Tazhong area in Tarim basin. Acta Sedimentologica Sinica, 15(2): 142-144 (in Chinese with English abstract). http://www.researchgate.net/publication/313515132_The_effect_of_the_complex_geothermal_field_based_on_the_multi-structure_evolution_to_hydrocarbon_generation-_a_case_of_Tazhong_Area_in_Tarim_Basin
      [20] Qiu, N, S., Wang, J.Y., Reiners, P.W., et al., 2010. Early Paleozoic tectonothermal evolution of the Tarim basin: constrained by (U-Th)/He ages. Science China (Ser. D). (in Press). http://www.cnki.com.cn/Article/CJFDTotal-JDXG201007005.htm
      [21] Ren, Z.L., Zhang, S., Gao, S.L., et al., 2007. Tectonic thermal history and its significance on the formation of oil and gas accumulation and mineral deposit in Ordos basin. Science in China (Series D), 50(Suppl. Ⅱ): 27-38. doi: 10.1007/s11430-007-6022-1 (in Chinese).
      [22] Stephenson, R., Egholm, D.L., Nielsen, S.B., et al., 2009. Role of thermal refraction in localizing intraplate deformation in southeastern Ukraine. Nature Geoscience, 2: 290-293. doi: 10.1038/ngeo479
      [23] Tissot, B.P., Pelet, R., Ungerer, P., 1987. Thermal history of sedimentary basins, maturation indices, and kinetics of oil and gas generation. AAPG Bulletin, 71(12): 1445-1466. http://ci.nii.ac.jp/naid/80003765769
      [24] Turcotte, D.L., Schubert, G., 1982. Geodynamics application of continuum physics to geological problems (2nd edition). John Wiley and Sons, New York, 134-195.
      [25] Wang, J., Wang, J.A., Shen, J.Y., et al., 1995. Heat flow in Tarim basin. Earth Science—Journal of China University of Geosciences, 20(4): 399-404 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX199504008.htm
      [26] Wang, L.S., Li, C., Liu, S.W., et al., 2003. Geotemperature gradient distribution of Kuqa foreland basin, north of Tarim, China. Chinese Journal of Geophysics, 46(3): 403-407 (in Chinese with English abstract). http://www.cqvip.com/QK/94718X/2003003/8872322.html
      [27] Wang, L.S., Li, C., Liu, S.W., et al., 2005. Terrestrial heat flow distribution in Kuqa foreland basin, Tarim, NW China. Petroleum Exploration and Development, 32(4): 79-83 (in Chinese with English abstract). http://www.researchgate.net/profile/Shaowen_Liu3/publication/298059208_Terrestrial_heat_flow_distribution_in_Kuqa_foreland_basin_Tarim_NW_China/links/56e8b0c808ae9bcb3e1cda70.pdf
      [28] Wang, L.S., Li, C., Shi, Y.S., 1995. Distribution of terrestrial heat flow density in Tarim basin, western China. Acta Geophysica Sinica, 38(6): 855-856 (in Chinese). http://www.cqvip.com/Main/Detail.aspx?id=1711006
      [29] Wang, L.S., Liu, S.W., Xiao, W.Y., et al., 2002. Distribution feature of terrestrial heat flow densities in the Bohai basin, East China. Chinese Science Bulletin, 47(2): 151-155 (in Chinese). doi: 10.1360/csb2002-47-2-151
      [30] Wang, Q., Zhang, P.Z., Freymueller, J.F., et al., 2001. Present-day crustal deformation in China constrained by global positioning system measurements. Science, 294(5524): 574-577. doi: 10.1126/science.1053647
      [31] Wang, S.J., Hu, S.B., Wang, J.Y., 2000. The characteristics of heat flow and geothermal fields in Junggar basin. Chinese Journal of Geophysics, 43(6): 771-779 (in Chinese with English abstract). http://www.onacademic.com/detail/journal_1000038806013110_72c9.html
      [32] Wei, D.W., 1992. Terrestrial heat flow on the northern side of Tarim basin. Scientia Geologica Sinica, 1: 93-96 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX199201013.htm
      [33] Woodside, W., Messmer, J.H., 1961a. Thermal conductivity of porous media: Ⅰ. unconsolidated sands. Journal of Applied Physics, 32(9): 1688-1699. doi: 10.1063/1.1728419
      [34] Woodside, W., Messmer, J.H., 1961b. Thermal conductivity of porous media: Ⅱ. consolidated rocks. Journal of Applied Physics, 32: 1699-1706. doi: 10.1063/1.1728420
      [35] Xiao, W.Y., Wang, L.S., Li, H., et al., 2001. Geotemperature field in Bohai Sea. China Offshore Oil and Gas (Geology), 15(2): 105-110(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-ZHSD200102004.htm
      [36] Xiao, X.C., Liu, X., Gao, R., et al., 2004. The crustal structure and tectonic evolution of southern Xinjiang, China. The Commercial Press, Beijing (in Chinese).
      [37] Xie, D.Y., 1993. Geothermal characteristics in northern Tarim basin, northwestern China. Earth Science—Journal of China University of Geosciences, 18(5): 627-634 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX199305012.htm
      [38] Xiong, L.P., Gao, W.A., 1982. Characteristics of geotherm in uplift and depression. Chinese Journal of Geophysics, 25(5): 448-456 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX198205008.htm
      [39] Xu, Y., Liu, F.T., Liu, J.H., et al., 2000. Seismic tomography beneath the orogenic belts and adjacent basins of northwestern China. Science in China (Series D), 30(2): 113-122 (in Chinese).
      [40] Yang, S.F., Chen, H.L., Ji, D.W., et al., 2005. Geological process of Early to Middle Permian magmatism in Tarim basin and its geodynamic significance. Geological Journal of China Universities, 11(4): 504-511 (in Chinese with English abstract). http://www.researchgate.net/publication/313514372_Geological_processor_of_Early_to_Middle_Permian_magmatism_in_Tarim_basin_and_its_geodynamic_significance
      [41] Yang, W., Wei, G.Q., Wang, Q.H., et al. 2004. Two types of Cambrian source rocks and related petroleum systems in Tarim basin. Oil and Gas Geology, 25(3): 263-267 (in Chinese with English abstract). http://www.cnki.com.cn/article/cjfdtotal-syyt200403004.htm
      [42] Yuan, Y.S., Ma, Y.S., Hu, S.B., et al., 2006. Present-day geothermal characteristics in South China. Chinese Journal of Geophysics, 49(4): 1118-1126 (in Chinese with English abstract). doi: 10.1002/cjg2.922
      [43] Zhang, G.M., Wang, S.Y., Li, L., et al., 2002. Focal depth research of earthquakes in Mainland China: implications for tectonics. Chinese Science Bulletin, 47(9): 663-668 (in Chinese). doi: 10.1360/csb2002-47-9-663
      [44] Zhang, H.A., Li, Y.J., Wu, G.Y., et al., 2009. Isotopic geochronology of Permian igneous rocks in the Tarim basin. Chinese Journal of Geology, 44(1): 137-158 (in Chinese with English abstract). http://www.researchgate.net/publication/284582615_Isotopic_geochronology_of_Permian_igneous_rocks_in_the_Tarim_basin_in_Chinese
      [45] Zhang, H.R., Liu, G.B., 1992. The hydrocarbon occurrence and characteristics of geothermal field in Tarim basin. Xinjiang Petroleum Geology, 13(4): 294-304 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSD199204001.htm
      [46] Zhou, Q.H., Feng, Z.H., Men, G.T., 2008. Present geotemperature and its suggestion to natural gas generation in Xujiaweizi fault-depression of northern Songliao basin. Science in China (Series D), 37(Suppl. Ⅱ): 177-188. doi: 10.1007/s11430-008-5007-z
      [47] Ziegler, P.A., Cloetingh, S., 2004. Dynamic processes controlling evolution of rifted basins. Earth-Science Reviews, 64(1-2): 1-50. doi: 10.1016/S0012-8252(03)00041-2
      [48] 龚育龄, 王良书, 刘绍文, 等, 2003a. 济阳坳陷地温场分布特征. 地球物理学报, 46(5): 652-658. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200305011.htm
      [49] 龚育龄, 王良书, 刘绍文, 等, 2003b. 济阳坳陷大地热流分布特征. 中国科学(D辑), 33(4): 384-391. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200304010.htm
      [50] 何治亮, 陈强路, 钱一雄, 等, 2006. 塔里木盆地中央隆起区油气勘探方向. 石油与天然气地质, 27(6): 769-778. doi: 10.3321/j.issn:0253-9985.2006.06.007
      [51] 贾承造, 1997. 中国塔里木盆地构造特征与油气. 北京: 石油工业出版社, 1-438.
      [52] 李惠莉, 邱楠生, 金之钧, 等, 2004. 塔里木盆地塔中地区地质热历史研究. 西安石油大学学报(自然科学版), 19(4): 36-39, Ⅵ. doi: 10.3969/j.issn.1673-064X.2004.04.009
      [53] 李丕龙, 2007. 塔里木盆地中央隆起带油气突破领域与勘探方向. 石油与天然气地质, 28(5): 576-583, 589. doi: 10.3321/j.issn:0253-9985.2007.05.006
      [54] 李素梅, 庞雄奇, 杨海军, 等, 2008. 塔中隆起原油特征与成因类型. 地球科学——中国地质大学学报, 33(5): 635-642. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200805009.htm
      [55] 邱楠生, 2002. 中国西北部盆地岩石热导率和生热率特征. 地质科学, 37(2): 196-206. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200202006.htm
      [56] 邱楠生, 金之钧, 王飞宇, 1997. 多期构造演化盆地的复杂地温场对油气生成的影响——以塔里木盆地塔中地区为例. 沉积学报, 15(2): 142-144. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB702.029.htm
      [57] 邱楠生, 汪集旸, Reiners, P.W., 等, 2010. (U-Th)/He年龄约束下的塔里木盆地早古生代构造-热演化研究. 中国科学(D辑), 待刊. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201012005.htm
      [58] 任战利, 张盛, 高胜利, 等, 2007. 鄂尔多斯盆地构造热演化史及其成藏成矿意义. 中国科学(D辑), 37(增刊Ⅰ): 23-32. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2007S1003.htm
      [59] 王钧, 汪缉安, 沈继英, 等, 1995. 塔里木盆地的大地热流. 地球科学——中国地质大学学报, 20(4): 399-404. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199504008.htm
      [60] 王良书, 李成, 刘绍文, 等, 2003. 塔里木盆地北缘库车前陆盆地地温梯度分布特征. 地球物理学报, 46(3): 403-407. doi: 10.3321/j.issn:0001-5733.2003.03.019
      [61] 王良书, 李成, 刘绍文, 等, 2005. 库车前陆盆地大地热流分布特征. 石油勘探与开发, 32(4): 79-83. doi: 10.3321/j.issn:1000-0747.2005.04.013
      [62] 王良书, 李成, 施央申, 1995. 塔里木盆地大地热流密度分布特征. 地球物理学报, 38(6): 855-856. doi: 10.3321/j.issn:0001-5733.1995.06.019
      [63] 王良书, 刘绍文, 肖卫勇, 等, 2002. 渤海盆地大地热流分布特征. 科学通报, 47(2): 151-155. doi: 10.3321/j.issn:0023-074X.2002.02.017
      [64] 王社教, 胡圣标, 汪集旸, 2000. 准噶尔盆地热流及地温场特征. 地球物理学报, 43(6): 771-779. doi: 10.3321/j.issn:0001-5733.2000.06.006
      [65] 魏大卫, 1992. 塔里木盆地北缘大地热流测定. 地质科学, 1: 93-96. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199201013.htm
      [66] 肖卫勇, 王良书, 李华, 等, 2001. 渤海盆地地温场研究. 中国海上油气(地质), 15(2): 105-110. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200102004.htm
      [67] 肖序常, 刘训, 高锐, 等, 2004. 新疆南部地壳结构和构造演化. 北京: 商务印书馆.
      [68] 谢德宜, 1993. 塔里木盆地北部的地温特征. 地球科学——中国地质大学学报, 18(5): 627-634. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199305012.htm
      [69] 熊亮萍, 高维安, 1982. 隆起与坳陷地区地温场的特点. 地球物理学报, 25(5): 448-456. doi: 10.3321/j.issn:0001-5733.1982.05.008
      [70] 胥颐, 刘福田, 刘建华, 等, 2000. 中国大陆西北造山带及其毗邻盆地的地震层析成像. 中国科学(D辑), 30(2): 113-122. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200002000.htm
      [71] 杨树锋, 陈汉林, 冀登武, 等, 2005. 塔里木盆地早-中二叠世岩浆作用过程及地球动力学意义. 高校地质学报, 11(4): 504-511. doi: 10.3969/j.issn.1006-7493.2005.04.005
      [72] 杨威, 魏国齐, 王清华, 等, 2004. 塔里木盆地寒武系两类优质烃源岩及其形成的含油气系统. 石油与天然气地质, 25(3): 263-267. doi: 10.3321/j.issn:0253-9985.2004.03.005
      [73] 袁玉松, 马永生, 胡圣标, 等, 2006. 中国南方现今地热特征. 地球物理学报, 49(4): 1118-1126. doi: 10.3321/j.issn:0001-5733.2006.04.025
      [74] 张国民, 汪素云, 李丽, 等, 2002. 中国大陆地震震源深度及其构造含义. 科学通报, 47(9): 663-668. doi: 10.3321/j.issn:0023-074X.2002.09.004
      [75] 张洪安, 李曰俊, 吴根耀, 等, 2009. 塔里木盆地二叠纪火成岩的同位素年代学. 地质科学, 44(1): 137-158.
      [76] 张惠蓉, 刘国壁, 1992. 塔里木盆地地热场特征与油气. 新疆石油地质, 13(4): 294-304. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD199204001.htm
      [77] 周庆华, 冯子辉, 门广田, 2007. 松辽盆地北部徐家围子断陷现今地温特征及其与天然气生成关系研究. 中国科学(D辑), 37(增刊Ⅱ): 177-188. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2007S2020.htm
    • 加载中
    图(7) / 表(2)
    计量
    • 文章访问数:  3248
    • HTML全文浏览量:  127
    • PDF下载量:  88
    • 被引次数: 0
    出版历程
    • 收稿日期:  2009-08-26
    • 刊出日期:  2010-07-01

    目录

      /

      返回文章
      返回