Occurrence of Silver in the Shagou Ag-Pb-Zn Deposit, Luoning County, Henan Province: Implications for Mechanism of Silver Enrichment
-
摘要: 位于河南洛宁境内的沙沟热液脉型Ag-Pb-Zn矿床是熊耳山地区近年来新发现的大型矿床.野外观察和矿相学研究表明成矿过程包含4个阶段, 分别为石英-菱铁矿阶段(Ⅰ)、石英-闪锌矿阶段(Ⅱ)、石英-银矿物-方铅矿阶段(Ⅲ)和石英-碳酸盐阶段(Ⅳ), 其中Ⅱ、Ⅲ阶段为主成矿阶段.扫描电子显微镜-能谱分析(SEM-EDS)和电子显微探针微区成分分析(EMP)结果显示, 沙沟矿床中的银以不可见银和可见银两种形式存在, 但以可见银为主.不可见银主要以次显微包体(< 1 μm)的形式被包裹在黄铜矿和闪锌矿等硫化物中, 而可见银通常以各种银的独立矿物形式交代方铅矿和黄铜矿等硫化物或充填在硫化物和石英的显微裂隙内.结合本文研究和前人对沙沟矿床流体包裹体的研究认为, 银和铅、锌等金属离子在成矿早期高温阶段以氯络合物的形式搬运, 随着成矿热液温度和氧逸度的降低以及pH值的升高, 氯络合物因稳定性降低而解体, 硫氢络合物成为银、铅、锌的主要迁移形式.随着成矿热液温度的继续降低, 铅、锌等金属硫氢络合物开始分解, 方铅矿、黄铜矿和闪锌矿等硫化物得以沉淀, 此时部分银以显微和次显微包体银的形式被包裹于这些硫化物中.铅锌硫化物的大量沉淀引起成矿热液组成和性质的显著变化, 最终导致银从硫氢络合物中彻底解体, 并与Cu+、Sb3+等离子结合形成大量独立银矿物(如含银黝铜矿、硫锑铜银矿和辉铜银矿等), 而溶液中过饱和的银则以自然银的形式沉淀.Abstract: The Shagou Ag-Pb-Zn vein-type deposit, located in the Luoning county of Henan Province, is hosted in amphibolite facies metamorphic rocks of the Archean Taihua Group and consists of four stages of mineralization: the quartz-siderite stage (Ⅰ), the quartz-sphalerite stage (Ⅱ), the quartz-silver minerals-galena stage (Ⅲ), and the quartz-carbonate stage (Ⅳ), with stages Ⅱ and Ⅲ being the main mineralization stages. Scanning electron microscopy-energy dispersive spectrometry (SEM-EDS) and electron microprobe (EMP) analysis suggests that both visible and invisible Ag are present in the ores. Invisible Ag occurs mainly as sub-micron inclusions (< 1 μm) within chalcopyrite, sphalerite and other sulphide minerals, whereas visible Ag occurs as silver minerals that replaced galena, chalcopyrite and other sulphides, or fills microfractures in sulphides and quartz. Combined with existing fluid inclusion data, our results indicate that Ag+, Pb+, Zn+ and other metal ions were transported as chloride complexes at the early high-temperature stage. When temperature and oxygen fugacity of the fluids descended, coupled with increasing pH, chloride complexes started to decompose to liberate Ag+, Pb+, Zn+ to form HS- complexes. Continuous drop of temperature and likely degassing of ore fluids, led to separation of Pb+ and Zn+ from HS- to form galena and sphalerite, into which some amounts of Ag+ were incorporated, forming sub-microscopic to microscopic silver inclusions. With the changes of composition and property of ore-forming fluids caused by precipitation of voluminous sulfide, Ag+ was released from HS- complex to combine with Cu+ and Sb3+, forming silver minerals (e.g. polybasite, jalpaite and native silver).
-
Key words:
- Xiong'er mineral district /
- Ag-Pb-Zn deposit /
- mineralogy /
- occurrence of silver /
- enrichment mechanism
-
图 1 沙沟Ag-Pb-Zn矿床地质构造简图(据毛景文等, 2006, 略有简化)
Fig. 1. Geological and tectonic map of the Shagou Ag-Pb-Zn deposit
图 2 沙沟矿床Ag-Pb-Zn矿脉野外产状特征
a.典型矿脉及其外围的围岩蚀变.其中矿脉自内向外依次为石英、铁白云石、闪锌矿、菱铁矿,呈细脉状对称分布;b.宽厚的条带状矿脉中多期矿化叠加;c.含硫化物石英脉切割早期含菱铁矿粗晶闪锌矿脉;d.石英和方解石晶簇充填在方铅矿脉的裂隙中;e.矿脉及叠加矿化特征,围岩被分支复合的矿脉捕获并发生蚀变.菱铁矿常分布于矿脉边部,闪锌矿与石英关系密切.方铅矿呈细脉充填菱铁矿脉,或是呈宽厚脉体将菱铁矿、闪锌矿捕获至其内部;Sd.菱铁矿;Ank.铁白云石;Sp.闪锌矿;Gn.方铅矿;Py.黄铁矿;Cp.黄铜矿;Cal.方解石;Qz.石英
Fig. 2. Field attitudes of Ag-Pb-Zn lodes in the Shagou deposit
图 3 银铅锌矿石的矿物组成和结构构造
a.菱铁矿脉穿插绢英蚀变岩,前者又被闪锌矿细脉充填;b.块状粗粒闪锌矿脉被石英细脉穿插;c.黄铜矿、石英和粗晶方铅矿的共生关系;d.细粒致密块状方铅矿呈脉状充填蚀变带;e.菱铁矿沿脉壁向中心生长(箭头所示),闪锌矿紧随菱铁矿生长(透射光,正交偏光);f.毒砂被包裹于闪锌矿中并被方铅矿切割,在其周围有辉砷镍矿呈自形晶粒产出(反射光,单偏光);g.方铅矿被含银黝铜矿交代,二者共同产于闪锌矿与石英的接触裂隙内,黄铜矿呈乳滴状分布于闪锌矿中(反射光,单偏光);h.含银黝铜矿交代黄铜矿和方铅矿(反射光,单偏光);i.方铅矿和黝铜矿交代闪锌矿,方铅矿也可被黝铜矿交代;含银黝铜矿呈包裹体产出在方铅矿中(反射光,单偏光);Ger.辉砷镍矿;Apy.毒砂;Ttr.黝铜矿;Ag-Ttr.含银黝铜矿;Ser.绢云母;其他矿物代号缩写同图 2
Fig. 3. Mineral compositions and structures of the sulfide ores
图 4 主要银矿物组成和产状及其与硫化物的结构关系
a.含银黝铜矿和硫锑铜银矿交代方铅矿,三者共同产于闪锌矿与石英之间的显微裂隙内(反射光,单偏光);b.硫锑铜银矿交代黄铜矿和含银黝铜矿,三者共同产于闪锌矿裂隙内(反射光,单偏光);c.黄铜矿、含银黝铜矿及方铅矿呈细脉状充填在绢英岩化蚀变带内(左侧反射光,单偏光;右侧透射光,正交偏光);d.黄铜矿呈不规则状分布于黝铜矿内,自然银及辉铜银矿呈细脉状穿插二者(反射光,单偏光);e.辉铜银矿呈镶边状包裹自然银,二者交代黄铜矿、黝铜矿及方铅矿(反射光,单偏光);f.自然银及其外侧镶边状辉铜银矿共同呈脉状穿插交代黄铜矿(反射光,单偏光);Pol.硫锑铜银矿;Jal.辉铜银矿;Arg.辉银矿;Ag.自然银;矿物代号缩写同图 2和图 3
Fig. 4. Compositions and attitudes of the silver minerals and their relations with sulfides
图 6 代表性样品SG80(a, b)和SG68(c, d)中主要银矿物的背散射电子图像
a.含银黝铜矿和硫锑铜银矿呈共结边结构,它们共同交代方铅矿,三者呈集合体状共同产于闪锌矿与铁白云石之间的裂隙内;b.含银黝铜矿和硫锑铜银矿交代或切割方铅矿和闪锌矿,闪锌矿中可见硫锑铜银矿的显微包体;c.硫锑铜银矿呈不规则状产于闪锌矿裂隙内,含银黝铜矿交代方铅矿或呈显微包体分布于闪锌矿内;d.硫锑铜银矿、含银黝铜矿和石英呈脉状充填在闪锌矿的显微裂隙内.矿物代号缩写同图 2、图 3和图 4
Fig. 6. BSE images of silver minerals from the representative samples SG80 (a, b) and SG68 (c, d)
图 9 银的氯络合物和硫氢络合物及主要银矿物的logf(O2)-pH稳定场(据尚林波等, 2004, 略有修改)(a)和沙沟矿床部分银矿物的Ag-Cu-Sb三角图解及银矿物的生成顺序和演化趋势(b)
图a中粗实线区分Ag、Ag2S、AgCl固相稳定场;细实线区分各种溶解硫稳定场;虚线区分AgCl2-和Ag(HS)2-的稳定场;点线表示AgCl2-和Ag(HS)2-的溶解度等值线,浓度均为10-6 mol/L.实验和热力学计算表明(尚林波等, 2003, 2004),在相同的环境中Ag(HS)2-在中低温条件下比Pb+, Zn+硫氢络合物的溶解度要高.随着温度的降低,铅、锌硫化物发生饱和并沉淀,银则以硫氢络合物形式继续稳定存在于热液中,从而造成银与铅、锌的分离.当物理化学条件超出Ag(HS)2-的稳定场,Ag+可直接从溶液中沉淀形成辉银矿和自然银等独立银矿物;图b的数据来源于主要银矿物的电子探针分析
Fig. 9. Logf(O2)-pH predominance area of Ag-complexes and major silver minerals at 200 ℃ (a) and Ag-Cu-Sb triangular diagram indicating the deposit sequence and evolutionary tendency of silver minerals in the Shagou deposit (b)
表 1 沙沟矿床SEM-EDS和EMP研究样品简要描述
Table 1. Brief description of the samples for SEM-EDS and EMP from the Shagou deposit
样品号 矿脉 中段(m) 阶段 位置 样品描述 SG37 S14 450 Ⅲ CM105南沿脉50 m处方铅矿脉中部 伴有硅化的块状细粒方铅矿 SG39 S14 450 Ⅱ CM105南沿脉80 m处闪锌矿脉中部 被后期石英脉充填的粗粒闪锌矿 SG40 S14 450 Ⅲ CM105南沿脉80 m处方铅矿脉中部 中-细粒方铅矿呈脉状充填细粒闪锌矿脉 SG43 S14 450 Ⅱ CM105南沿脉90 m处闪锌矿脉边部 沿菱铁矿脉内侧生长的粗粒闪锌矿 SG68 S6 570 Ⅲ CM102北沿脉25 m处方铅矿脉边部 细粒方铅矿交代闪锌矿细脉 SG80 S6 570 Ⅲ CM102北沿脉120 m处矿脉中部 条带状多金属硫化物矿石 SG17 S16 490 - CM105南沿脉30 m处矿脉边部 与石英共生的粗粒方铅矿集合体 SG88 S8 570 - CM102北沿脉上山15 m处矿脉边部 细粒多金属硫化物矿石 表 2 沙沟矿床硫化物的电子探针分析结果(%)
Table 2. EMP data of sulfides from the Shagou deposit
矿物 分析点号 Ag Fe Cu Zn Pb S As Sb Co Ni Total 闪锌矿 SG37-1-3 b.d. 0.20 0.21 66.31 n.d. 32.53 0.04 b.d. n.d. n.d. 99.28 SG39-1-5 b.d. 2.18 0.45 64.36 n.d. 32.01 b.d. b.d. n.d. n.d. 99.00 SG43-1-3 0.02 3.59 0.78 62.54 n.d. 32.76 b.d. b.d. n.d. n.d. 99.69 SG40-2-4 0.59 0.52 1.37 63.98 n.d. 32.17 0.10 0.85 n.d. n.d. 99.58 SG68-1-3 0.04 0.43 0.18 66.86 n.d. 32.31 b.d. b.d. n.d. n.d. 99.82 SG88-1-4 b.d. 0.15 0.16 66.73 n.d. 32.68 b.d. b.d. n.d. n.d. 99.72 方铅矿 SG37-1-2 b.d. 0.07 0.14 0.44 86.49 12.36 b.d. b.d. n.d. n.d. 99.50 SG37-2-4 b.d. 0.07 0.14 0.22 87.22 12.18 b.d. b.d. n.d. n.d. 99.82 SG39-1-4 b.d. 0.67 0.14 1.01 85.97 12.09 b.d. b.d. n.d. n.d. 99.88 SG40-2-3 b.d. 0.09 0.23 0.59 86.55 12.46 b.d. b.d. n.d. n.d. 99.92 SG17-1-2 b.d. 0.07 0.15 0.23 86.85 12.41 b.d. b.d. n.d. n.d. 99.71 SG17-2-3 b.d. 0.08 0.24 0.27 86.61 12.53 b.d. b.d. n.d. n.d. 99.72 SG17-3-2 b.d. 0.11 0.18 0.19 87.03 12.31 b.d. b.d. n.d. n.d. 99.82 SG88-1-5 b.d. 0.08 0.14 0.21 86.89 12.32 b.d. b.d. n.d. n.d. 99.63 SG88-2-6 0.08 0.08 0.17 0.19 86.83 12.44 b.d. b.d. n.d. n.d. 99.79 黄铁矿 SG37-2-3 0.01 46.54 0.07 0.08 n.d. 52.29 0.19 b.d. 0.10 0.04 99.32 SG37-3-2 b.d. 46.36 0.35 0.06 n.d. 52.45 b.d. b.d. 0.09 0.06 99.38 SG39-2-2 0.03 46.05 0.04 0.45 n.d. 52.12 0.02 b.d. 0.30 0.44 99.45 SG39-3-1 b.d. 45.45 0.06 0.33 n.d. 52.35 0.95 b.d. 0.32 0.32 99.78 SG80-5-2 b.d. 46.45 0.06 0.08 n.d. 52.23 b.d. b.d. 0.10 0.13 99.05 SG88-3-3 0.04 45.73 0.24 0.08 n.d. 53.60 b.d. b.d. 0.08 0.03 99.79 黄铜矿 SG37-2-2 b.d. 30.95 33.82 0.09 n.d. 34.88 b.d. b.d. 0.05 0.05 99.83 SG37-3-1 0.01 30.93 33.32 0.12 n.d. 35.46 b.d. b.d. 0.06 0.03 99.93 SG40-2-5 1.12 28.26 32.78 0.86 n.d. 35.09 0.03 1.57 0.08 0.03 99.82 SG68-1-5 0.08 29.57 32.48 2.05 n.d. 35.51 0.00 b.d. 0.06 0.06 99.81 SG17-4-1 0.37 30.01 32.96 0.41 n.d. 35.44 b.d. 0.02 0.07 0.03 99.30 SG88-1-2 0.90 30.74 33.37 0.10 n.d. 34.49 b.d. b.d. 0.07 0.04 99.72 SG88-2-2 1.74 29.74 33.54 0.14 n.d. 34.00 b.d. b.d. 0.06 0.03 99.25 毒砂 SG39-1-1 0.01 35.70 0.05 0.59 n.d. 22.85 39.90 0.13 0.12 0.10 99.45 SG39-3-2 0.03 34.15 0.05 0.74 n.d. 20.15 43.37 0.14 0.55 0.41 99.59 SG39-3-4 b.d. 35.75 0.08 0.49 n.d. 24.45 38.30 0.00 0.24 0.20 99.51 SG39-3-5 b.d. 34.94 0.09 1.58 n.d. 22.70 40.45 0.08 0.08 0.05 99.97 SG39-4-1 b.d. 35.81 0.08 0.62 n.d. 23.80 39.08 0.23 0.13 0.05 99.78 SG43-2-1 0.02 35.87 0.10 0.09 n.d. 22.67 40.57 b.d. 0.14 0.08 99.53 铁辉砷镍矿* SG39-1-6 b.d. 10.84 b.d. 1.14 n.d. 19.98 41.41 b.d. 3.64 21.38 98.39 SG39-1-7 b.d. 10.31 b.d. 0.53 n.d. 20.53 43.04 b.d. 3.21 21.70 99.32 注:“b.d.”表示低于检测限;“n.d.”表示未进行检测;*矿物命名据於晓晋等(1997). 表 3 沙沟矿床银矿物的电子探针分析结果(%)
Table 3. EMP data of silver minerals from the Shagou deposit
矿物 分析点号 Ag Fe Cu Zn S As Sb Se Te Sn Co Ni Total 自然银 SG88-1-1 99.13 n.d. 0.28 n.d. 0.20 b.d. b.d. n.d. n.d. n.d. n.d. n.d. 99.61 SG88-2-1 99.26 n.d. 0.21 n.d. 0.11 b.d. b.d. n.d. n.d. n.d. n.d. n.d. 99.58 SG88-2-4 99.10 n.d. 0.23 n.d. 0.11 b.d. b.d. n.d. n.d. n.d. n.d. n.d. 99.44 硫锑铜银矿 SG40-2-1 69.44 0.06 6.12 0.51 14.73 2.35 5.92 b.d. 0.04 b.d. 0.06 0.08 99.30 SG43-1-2 70.70 0.69 4.31 0.47 14.89 1.98 6.36 b.d. 0.03 b.d. 0.06 0.06 99.55 SG68-1-1 66.98 0.07 5.12 1.92 15.63 2.18 7.36 b.d. 0.02 b.d. 0.07 0.08 99.42 SG68-2-1 70.21 0.05 4.89 0.77 14.37 1.31 7.76 b.d. b.d. b.d. 0.05 0.08 99.49 含银黝铜矿* SG37-1-1 11.80 1.40 29.38 5.99 23.75 1.61 25.41 b.d. b.d. 0.21 0.04 0.06 99.65 SG37-2-1 13.49 1.32 28.18 6.12 23.19 0.69 26.45 b.d. b.d. 0.18 0.05 0.06 99.73 SG40-1-1 15.32 1.74 26.88 6.10 23.20 2.27 23.50 b.d. b.d. 0.33 0.05 0.05 99.45 SG40-2-2 15.42 2.01 27.09 5.93 23.49 2.63 22.96 b.d. b.d. 0.17 0.04 0.08 99.81 SG40-3-1 15.46 1.90 26.07 7.66 22.84 1.78 24.03 b.d. b.d. 0.20 0.05 0.06 100.05 SG43-1-1 16.88 2.33 25.41 5.83 23.36 3.24 22.15 b.d. b.d. 0.18 0.04 0.07 99.49 SG68-1-2 17.04 2.45 24.45 6.02 23.02 1.33 24.85 b.d. b.d. 0.24 0.02 0.08 99.51 SG80-5-1 16.05 1.59 26.40 5.62 23.34 1.21 25.14 b.d. b.d. 0.23 0.07 0.07 99.71 黝铜矿* SG17-1-1 4.52 0.82 34.64 6.89 24.42 1.56 25.77 b.d. b.d. 0.28 0.05 0.06 99.00 SG17-3-3 3.05 0.78 36.23 6.94 25.12 3.18 24.02 b.d. b.d. 0.24 0.05 0.06 99.66 SG88-1-3 3.29 0.45 35.97 7.38 24.18 0.85 26.84 b.d. b.d. 0.25 0.07 0.07 99.33 SG88-2-3 3.58 0.51 35.99 7.39 24.01 0.59 27.15 b.d. b.d. 0.23 0.06 0.07 99.58 SG88-2-5 4.88 0.44 35.28 7.18 24.19 1.19 26.02 b.d. b.d. 0.23 0.07 0.08 99.55 SG88-3-1 5.78 0.38 33.61 7.28 24.14 1.13 26.78 b.d. b.d. 0.21 0.07 0.06 99.43 SG88-3-2 6.02 0.38 34.30 7.22 24.34 1.38 25.69 b.d. b.d. 0.24 0.04 0.07 99.69 SG88-3-4 2.09 0.44 36.60 7.43 24.38 0.87 27.23 b.d. b.d. 0.26 0.06 0.06 99.41 注:“b.d.”表示低于检测限;“n.d.”表示未进行检测;*矿物命名据黄典豪(2000). -
[1] Barnes, H.L., 1979. Solubilities of ore minerals. In: Bames, H.L., ed., Geochemistry of hydrothermal ore deposits(2nd ed. ). Wiley-inter Science, New York, 404-460. [2] Bonev, I.K., 2007. Crystal habit of Ag-, Sb- and Bi-bearing galena from the Pb-Zn ore deposits in the Rhodope Mountains. Geochemistry, Mineralogy and Petrology·Sofia, 45: 1-18. http://router.geology.bas.bg/mineralogy/gmp_files/gmp45/1-18bonev.pdf [3] Bouabdellah, M., Beaudoin, G., Leach, D.L., et al., 2009. Genesis of the Assif El Mal Zn-Pb (Cu, Ag) vein deposit. An extension-related Mesozoic vein system in the High Atlas of Morocco. Structural, mineralogical, and geochemical evidence. Miner. Deposita, 44(6): 689-704. doi: 10.1007/s00126-009-0232-8 [4] Cabri, L.J., 1987. The mineralogy of precious metals: new developments and metallurgical implications. Canadian Mineralogist, 25(1): 1-7. http://www.researchgate.net/publication/258210403_The_mineralogy_of_precious_metals_new_developments_and_metallurgical_implications_-_Presidential_address [5] Cabri, L.J., 1992. The distribution of trace precious metals in minerals and mineral products. Mineralogical Magazine, 56(384): 289-308. doi: 10.1180/minmag.1992.056.384.01 [6] Chang, L., Wu, D.Q., Knowles, C.R., 1988. Phase relations in the system Ag2S-Cu2S-PbS-Bi2S3. Economic Geology, 83(2): 405-418. doi: 10.2113/gsecongeo.83.2.405 [7] Chen, W., Guo, S.R., Cui, H., 1996. Isotopic geochemistry of the Tieluping and Haopinggou deposits in the Mount Xiong'er area, western Henan. Geological Exploration for Non-ferrous Metals, 5(4): 213-218 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSJS604.003.htm [8] Chen, Y.J., Sui, Y.H., Pirajno, F., 2003. Exclusive evidences for CMF model and a case of orogenic silver deposits: isotope geochemistry of the Tieluping silver deposit, East Qinling orogen. Acta Petrologica Sinica, 19(3): 551-568 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200303021.htm [9] Costagliola, P., Di Benedetto, F., Benvenuti, M., et al., 2003. Chemical speciation of Ag in galena by EPR spectroscopy. American Mineralogist, 88(8-9): 1345-1350. [10] Foord, E.E., Shawe, D.R., 1989. The Pb-Bi-Ag-Cu-(Hg) chemistry of galena and some associated sulfosalts: a review and some new data from Colorado, California and Pennsylvania. Canadian Mineralogist, 27(3): 363-382. http://rruff.geo.arizona.edu/doclib/cm/vol27/CM27_363.pdf [11] Gammons, C.H., Barnes, H.L., 1989. The solubility of Ag2S in near-neutral aqueous sulfide solutions at 25 to 300 ℃. Geochimica et Cosmochimica Acta, 53(2): 279-290. doi: 10.1016/0016-7037(89)90380-3 [12] Gao, J.J., 2007. Geology and ore-forming fluid of silver-lead-zinc lode deposit of Shagou, western Henan Province (Dissertation). China University of Geosciences, Beijing, 1-91 (in Chinese with English abstract). [13] Gasparrini, C., Lowell, G.R., 1985. Silver-bearing inclusions in "argentiferous" galena from the Silvermine district in southeastern Missouri. Canadian Mineralogist, 23(1): 99-102. http://www.researchgate.net/publication/237543960_SILVERBEARING_INCLUSIONS_IN_ARGENTIFEROUS_GALENA_FROM_THE_SILVERMINE_DISTRICT_IN_SOUTHEASTERN_MISSOURI [14] Giordano, T.H., Barnes, H.L., 1979. Ore solution chemistry VI. PbS solubility in bisulfide solutions to 300 ℃. Economic Geology, 74(7): 1637-1646. doi: 10.2113/gsecongeo.74.7.1637 [15] Guo, B.J., Li, Y.F., Wang, Z.G., et al., 2005. Type, metallogenetic regularities, mineralization model and prospecting proposal in the Xiong'ershan district. Geology and Prospecting, 41(5): 43-47 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT200505008.htm [16] Hayashi, K., Sugaki, A., Kitakaze, A., 1990. Solubility of sphalerite in aqueous sulfide solutions at temperatures between 25 and 240 ℃. Geochimica et Cosmochimica Acta, 54(3): 715-725. doi: 10.1016/0016-7037(90)90367-T [17] He, Y.H., Zhao, G.C., Sun, M., et al., 2009. SHRIMP and LA-ICP-MS zircon geochronology of the Xiong'er volcanic rocks: implications for the Paleo-Mesoproterozoic evolution of the southern margin of the North China craton. Precambrian Research, 168(3-4): 213-222. doi: 10.1016/j.precamres.2008.09.011 [18] Hu, S.X., Lin. Q.L., Chen, Z.M., et al., 1988. Geology and metallogeny of the collison belt of the North and the South China plates. Nanjing University Press, Nanjing, 16-73 (in Chinese). [19] Huang, D.H., 2000. Characteristics of silver sulphosalt minerals of the tetrahedrite group in silver polymetallic deposits and their significance. Acta Petrologica et Mineralogica, 19(1): 78-87 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200001009.htm [20] Li, Y.F., Mao, J.W., Liu, D.Y., et al., 2006. SHRIMP zircon U-Pb and molybdenite Re-Os datings for the Leimengou porphyry molybdenum deposit, western Henan and its geological implication. Geological Review, 52(1): 122-131 (in Chinese with English abstract). http://www.researchgate.net/publication/304578507_SHRIMP_zircon_U-Pb_and_molybdenite_Re-Os_dating_for_the_Leimengou_porphyry_molybdenum_deposit_western_Henan_and_its_geological_implication [21] Lueth, V.W., Megaw, P.K.M., Pingitore, N.E., et al., 2000. Systematic variation in galena solid-solution compositions at Santa Eulalia, Chihuahua, Mexico. Economic Geology, 95(8): 1673-1687. doi: 10.2113/95.8.1673 [22] Mao, J.W., Xie, G.Q., Zhang, Z.H., et al., 2005. Mesozoic large-scale metallogenic pulses in North China and corresponding geodynamic settings. Acta Petrologica Sinica, 21(1): 169-188 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20050118 [23] Mao, J.W., Xie, G.Q., Pirajno, F., et al., 2010. Late Jurassic-Early Cretaceous granitoid magmatism in eastern Qinling, central-eastern China: SHRIMP zircon U-Pb ages and tectonic implications. Australian Journal of Earth Sciences: An International Geoscience Journal of the Geological Society of Australia, 57(1): 51-78. doi: 10.1080/08120090903416203 [24] Mao, J.W., Zheng, R.F., Ye, H.S., et al., 2006. 40Ar/39Ar dating of fuchsite and sericite from altered rocks close to ore veins in Shagou large-size Ag-Pb-Zn deposit of Xiong'ershan area, western Henan Province, and its significance. Mineral deposits, 25(4): 359-368 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200604001.htm [25] Ruaya, J.R., Seward, T.M., 1986. The stability of chlorozinc (Ⅱ) complexes in hydrothermal solutions up to 350 ℃. Geochimica et Cosmochimica Acta, 50(5): 651-661. doi: 10.1016/0016-7037(86)90343-1 [26] Seward, T.M., 1976. The stability of chloride complexes of silver in hydrothermal solutions up to 350 ℃. Geochimica et Cosmochimica Acta, 40(11): 1329-1341. doi: 10.1016/0016-7037(76)90122-8 [27] Seward, T.M., 1984. The formation of lead (Ⅱ) chloride complexes to 300 ℃: a spectrophotometric study. Geochimica et Cosmochimica Acta, 48(1): 121-134. doi: 10.1016/0016-7037(84)90354-5 [28] Shang, L.B., Fan, W.L., Deng, H.L., 2003. An experimental study on paragenesis and separation of silver, lead and zinc in hydrothermal solutions. Acta Mineralogica Sinica, 23(1): 31-36 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB200301005.htm [29] Shang, L.B., Fan, W.L., Hu, R.Z., et al., 2004. A thermodynamic study on paragenesis and separation of silver, lead and zinc in hydrothermal solutions. Acta Mineralogica Sinica, 24(1): 81-86 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KWXB200401013.htm [30] Sharp, T.G., Buseck, P.R., 1993. The distribution of Ag and Sb in galena: inclusions versus solid solution. American Mineralogist, 78(1-2): 85-95. http://www.minsocam.org/ammin/AM78/AM78_85.pdf [31] Stefansson, A., Seward, T.M., 2003. Experimental determination of the stability and stoichiometry of sulphide complexes of silver (Ⅰ) in hydrothermal solutions to 400 ℃. Geochimica et Cosmochimica Acta, 67(7): 1395-1413. doi: 10.1016/S0016-7037(02)01093-1 [32] Voudouris, P., Melfos, V., Spry, P.G., et al., 2008. Carbonate-replacement Pb-Zn-Ag±Au mineralization in the Kamariza area, Lavrion, Greece: mineralogy and thermochemical conditions of formation. Mineralogy and Petrology, 94(1-2): 85-106. doi: 10.1007/s00710-008-0007-4 [33] Wang, Z.G., Cui, H., Xu, M.L., et al., 1997. The tectonic evolution and mineralization in the south margin of North China block. Metallurgical Industry Press, Beijing, 1-296 (in Chinese). [34] Yan, J.S., Wang, M.S., Yang, J.C., et al., 2000. Tectonic evolution of the Machaoying fault zone in western Henan and its relationship with Au polymetallic mineralization. Regional Geology of China, 19(2): 166-171 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200002009.htm [35] Yu, X.J., Chen, K.Q., Zhang, L.Y., 1997. Study on electron probe analysis of ferric-gersdorffite. Rock and Mineral analysis, 16(3): 211-216 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKCS703.009.htm [36] Zeng, N.S., Izawa, E., Motomura, Y., et al., 2000. Silver minerals and paragenesis in the Kangjiawan Pb-Zn-Ag-Au deposit of the Shuikoushan mineral district, Hunan Province, China. Canadian Mineralogist, 38(1): 11-22. doi: 10.2113/gscanmin.38.1.11 [37] Zhao, T.P., Zhai, M.G., Xia, B., et al., 2004. Study on the zircon SHRIMP ages of the Xiong'er Group volcanic rocks: constraints on the starting time of covering strata in the North China craton. Chinese Science Bulletin, 49(22): 2342-2349 (in Chinese). doi: 10.1360/csb2004-49-22-2342 [38] Zheng, R.F., 2006. Study on the geologic characteristics, mineral associations and enrichment regularity of silver in the silver-lead-zinc ore deposit of Shagou, Xiong'er Shan district, Henan Province (Dissertation). China University of Geosciences, Beijing, 1-87 (in Chinese with English abstract). [39] Zheng, R.F., Mao, J.W., Gao, J.J., 2006. Characteristics of sulfide and silver minerals in Shagou silver-lead-zinc deposit of Xiong'er Shan, Henan Province, and their significance. Mineral Deposits, 25(6): 715-726 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200606007.htm [40] 陈旺, 郭时然, 崔毫, 1996. 豫西熊耳山铁炉坪、蒿坪沟矿床银铅矿石稳定同位素研究. 有色金属矿产与勘查, 5(4): 213-218. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS604.003.htm [41] 陈衍景, 隋颖慧, Pirajno, F., 2003. CMF模式的排他性依据和造山型银矿实例: 东秦岭铁炉坪银矿同位素地球化学. 岩石学报, 19(3): 551-568. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200303021.htm [42] 高建京, 2007. 豫西沙沟脉状Ag-Pb-Zn矿床地质特征和成矿流体研究(硕士学位论文). 北京: 中国地质大学, 1-91. [43] 郭保健, 李永峰, 王志光, 等, 2005. 熊耳山Au-Ag-Pb-Mo矿集区成矿模式与找矿方向. 地质与勘探, 41(5): 43-47. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200505008.htm [44] 胡受奚, 林潜龙, 陈泽铭, 等, 1988. 华北与华南古板块拼合带地质与成矿. 南京: 南京大学出版社, 16-73. [45] 黄典豪, 2000. 银多金属矿床中黝铜矿族银硫盐矿物的特征及其意义. 岩石矿物学杂志, 19(1): 78-87. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200001009.htm [46] 李永峰, 毛景文, 刘敦一, 等, 2006. 豫西雷门沟斑岩钼矿SHRIMP锆石U-Pb和辉钼矿Re-Os测年及其地质意义. 地质论评, 52(1): 122-131. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200601019.htm [47] 毛景文, 谢桂青, 张作衡, 等, 2005. 中国北方中生代大规模成矿作用的期次及其地球动力学背景. 岩石学报, 21(1): 169-188. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200501018.htm [48] 毛景文, 郑榕芬, 叶会寿, 等, 2006. 豫西熊耳山地区沙沟银铅锌矿床成矿的40Ar-39Ar年龄及其地质意义. 矿床地质, 25(4): 359-368. doi: 10.3969/j.issn.0258-7106.2006.04.002 [49] 尚林波, 樊文苓, 邓海琳, 2003. 热液中银、铅、锌共生分异的实验研究. 矿物学报, 23(1): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200301005.htm [50] 尚林波, 樊文苓, 胡瑞忠, 等, 2004. 热液中铅、锌、银共生分异的热力学探讨. 矿物学报, 24(1): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200401013.htm [51] 王志光, 崔毫, 徐孟罗, 等, 1997. 华北地块南缘地质构造演化与成矿. 北京: 冶金工业出版社, 1-296. [52] 燕建设, 王铭生, 杨建朝, 等, 2000. 豫西马超营断裂带的构造演化及其与金等成矿的关系. 中国区域地质, 19(2): 166-171. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200002009.htm [53] 於晓晋, 陈克樵, 张丽彦, 1997. 铁辉砷镍矿的电子探针研究. 岩矿测试, 16(3): 211-216. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS703.009.htm [54] 赵太平, 翟明国, 夏斌, 等, 2004. 熊耳群火山岩锆石SHRIMP年代学研究: 对华北克拉通盖层发育初始时间的制约. 科学通报, 49(22): 2342-2349. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB20042200F.htm [55] 郑榕芬, 2006. 河南省熊耳山沙沟银铅锌矿床地质特征、矿物组合及银的富集规律研究(硕士学位论文). 北京: 中国地质大学, 1-87. [56] 郑榕芬, 毛景文, 高建京, 2006. 河南熊耳山沙沟银铅锌矿床中硫化物和银矿物的矿物学特征及其意义. 矿床地质, 25(6): 715-726. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200606007.htm