• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    川西石棉花岗岩的锆石U-Pb年龄和岩石地球化学特征: 岩石成因与构造意义

    林广春

    林广春, 2010. 川西石棉花岗岩的锆石U-Pb年龄和岩石地球化学特征: 岩石成因与构造意义. 地球科学, 35(4): 611-620. doi: 10.3799/dqkx.2010.076
    引用本文: 林广春, 2010. 川西石棉花岗岩的锆石U-Pb年龄和岩石地球化学特征: 岩石成因与构造意义. 地球科学, 35(4): 611-620. doi: 10.3799/dqkx.2010.076
    LIN Guang-chun, 2010. Zircon U-Pb Age and Petrochemical Characteristics of Shimian Granite in Western Sichuan: Petrogenesis and Tectonic Significance. Earth Science, 35(4): 611-620. doi: 10.3799/dqkx.2010.076
    Citation: LIN Guang-chun, 2010. Zircon U-Pb Age and Petrochemical Characteristics of Shimian Granite in Western Sichuan: Petrogenesis and Tectonic Significance. Earth Science, 35(4): 611-620. doi: 10.3799/dqkx.2010.076

    川西石棉花岗岩的锆石U-Pb年龄和岩石地球化学特征: 岩石成因与构造意义

    doi: 10.3799/dqkx.2010.076
    基金项目: 

    国家自然科学基金项目 40273012

    国家自然科学基金项目 40421303

    长安大学科技发展基金 0305-1001

    详细信息
      作者简介:

      林广春(1974-), 男, 博士, 地球化学专业.E-mail: lgchunxa@126.com

    • 中图分类号: P597

    Zircon U-Pb Age and Petrochemical Characteristics of Shimian Granite in Western Sichuan: Petrogenesis and Tectonic Significance

    • 摘要: 扬子西缘新元古代岩浆岩分布广泛, 目前对其成因和构造背景还存在很大争议.对扬子西缘康滇裂谷北段石棉花岗岩体进行了系统的SHRIMP锆石U-Pb年龄、岩石学和元素-Nd同位素地球化学研究, 结果表明该岩体是弱铝质的高钾钙碱性Ⅰ型花岗岩, 形成于818±7 Ma, 是由前存年轻(中元古代末-新元古代初)岛弧地壳物质部分熔融形成的, 并混染了少量古老地壳物质.石棉花岗岩形成于扬子地块西缘由会聚挤压向陆内伸展的转折时期, 其"岛弧地球化学特征"是继承了源岩的地球化学特征的结果, 不代表其形成时的构造环境.

       

    • 图  1  川西泸定-石棉地区前寒武纪地质略图

      右上角插图为华南新元古代裂谷系构造简图(Li et al., 1999)

      Fig.  1.  Simplified Precambrian geological map of the Luding-Shimian region, western Sichuan

      图  2  石棉花岗岩的锆石U-Pb谐和图解(a)和代表性锆石阴极发光图像(b)

      Fig.  2.  U-Pb zircon concordia diagram (a) and representative zircons CL images (b) for Shimian granite, western Sichuan

      图  3  石棉花岗岩的(a)K2O-SiO2图解(Peccerillo and Taylor, 1976)和(b)(K2O+Na2O)-SiO2岩石分类图解(Middlemost, 1994)

      Fig.  3.  Plots of (a) K2O-SiO2 and (b) (K2O+Na2O)-SiO2 for classification of Shimian granite, western Sichuan

      图  4  石棉花岗岩的Harker图解

      Fig.  4.  Chemical variation diagrams for Shimian granite, western Sichuan

      图  5  石棉花岗岩样品的稀土元素分布形式(a)和微量元素蛛网图(b)

      球粒陨石和MORB数据引自Sun and McDonough, 1989

      Fig.  5.  Chondrite-normalized REE diagram (a) and MORB-normalized spidergram (b) for Shimian granite

      图  6  川西石棉花岗岩构造判别图(Pearce et al., 1984)

      (a)Nb-Y判别图;(b)Rb-(Y+Nb)判别图

      Fig.  6.  Tectonic discrimination diagrams for Shimian granite, western Sichuan

      表  1  川西石棉花岗岩SHRIMP锆石U-Pb同位素分析结果

      Table  1.   SHRIMP U-Pb isotopic data for zircons from Shimian granite in western Sichuan

      点号 Th(μg/g) U(μg/g) Th/U 206Pb*(%) 207Pb/206Pb±1σ 206Pb/238U±1σ 207Pb/235U±1σ 206Pb/238U±1σ(Ma) 207Pb/206Pb±1σ(Ma)
      1 173 219 0.81 0.17 0.069 49±0.000 67 0.124 7±0.000 7 1.172±0.014 757±4 872±22
      2 69 99 0.72 0.63 0.071 08±0.000 93 0.139 0±0.001 1 1.261±0.036 838±6 801±57
      3 57 113 0.52 0.99 0.071 76±0.000 85 0.135 3±0.001 0 1.186±0.037 817±6 727±64
      4 211 203 1.07 0.76 0.072 86±0.000 76 0.142 5±0.000 9 1.308±0.027 858±5 824±41
      5 160 264 0.63 0.52 0.067 65±0.000 55 0.136 8±0.000 8 1.194±0.019 826±4 719±32
      6 92 161 0.59 0.80 0.070 25±0.000 72 0.136 6±0.000 9 1.197±0.029 825±5 727±50
      7 92 143 0.67 0.91 0.070 10±0.000 76 0.138 7±0.000 9 1.196±0.034 836±5 693±58
      8 147 317 0.48 0.35 0.067 79±0.000 49 0.136 9±0.000 7 1.226±0.017 827±4 772±28
      9 69 119 0.60 1.15 0.071 60±0.001 40 0.134 6±0.001 0 1.150±0.042 813±5 673±77
      10 77 126 0.63 0.73 0.070 48±0.000 81 0.135 2±0.000 9 1.202±0.029 817±5 756±50
      11 174 210 0.85 0.51 0.070 54±0.000 78 0.137 6±0.000 8 1.259±0.023 831±5 817±37
      12 58 119 0.50 0.40 0.070 00±0.001 20 0.134 1±0.001 0 1.234±0.034 811±6 829±56
      13 51 96 0.55 0.46 0.073 00±0.001 50 0.132 8±0.001 0 1.266±0.037 803±6 904±59
      14 143 198 0.75 0.12 0.068 81±0.000 64 0.133 8±0.000 8 1.250±0.017 809±4 863±35
      15 54 92 0.60 0.76 0.074 40±0.001 50 0.136 1±0.001 0 1.279±0.041 822±6 873±64
      16 115 182 0.66 0.39 0.071 10±0.001 20 0.131 1±0.000 8 1.227±0.028 794±5 865±45
      17 148 162 0.94 0.48 0.071 49±0.000 69 0.132 5±0.000 8 1.233±0.021 801±5 854±34
      注:206Pb*表示普通206Pb占总206Pb的百分比;采用204Pb校正方法计算年龄.
      下载: 导出CSV

      表  2  川西石棉花岗岩主量元素(%)和微量元素(μg/g)分析结果

      Table  2.   Major (%) and trace element (μg/g) analyses of Shimian granite in western Sichuan

      样号 04KD20-6 04KD20-10 04KD21-4 04KD23-1 04KD23-4 04KD24-2 98KD71 98KD72 98KD74 98KD86
      主量元素(%)
      SiO2 77.83 77.23 71.19 71.02 71.98 76.28 74.57 76.26 74.69 77.19
      TiO2 0.08 0.08 0.35 0.32 0.35 0.11 0.19 0.09 0.11 0.13
      Al2O3 11.87 12.26 14.16 13.44 14.18 12.37 13.38 12.47 12.18 11.52
      TFe2O3 1.65 1.68 3.58 3.91 3.39 1.62 1.91 1.47 1.59 1.63
      MnO 0.03 0.03 0.06 0.06 0.06 0.03 0.04 0.03 0.03 0.02
      MgO 0.16 0.16 0.38 0.36 0.36 0.09 0.36 0.01 0.19 0.16
      CaO 0.20 0.14 2.00 1.92 2.07 0.60 0.47 0.41 0.82 0.33
      K2O 5.03 5.27 4.11 4.50 3.75 5.16 4.20 4.70 6.01 5.52
      Na2O 3.00 3.06 3.37 3.22 3.33 2.74 3.83 3.53 2.56 2.52
      P2O5 0.01 0.01 0.07 0.07 0.07 0.01 0.05 0.03 0.03 0.04
      烧失 0.51 0.41 0.85 0.58 0.75 0.47 0.22 0.46 0.79 0.47
      总量 100.36 100.31 100.10 99.40 100.27 99.46 99.22 99.46 99.00 99.52
      A/CNK 1.11 1.12 1.04 0.98 1.07 1.11 1.14 1.07 1.00 1.08
      (Ga/Al)×104 2.66 2.53 2.64 2.54 2.53 2.45 2.55 2.85 2.19 3.53
      微量元素(μg/g)
      Ga 16.70 16.40 19.90 18.30 19.10 16.20 18.20 19.00 14.30 21.70
      Rb 261.00 244.00 170.00 189.00 165.00 229.00 142.00 206.00 204.00 368.00
      Sr 15.30 15.20 178.00 117.00 179.00 81.00 64.70 18.20 64.30 7.21
      Y 41.20 56.30 49.00 44.80 41.90 29.10 28.30 39.50 33.30 72.20
      Zr 85.20 109.00 195.00 240.00 185.00 113.00 179.00 84.80 143.00 177.00
      Nb 18.00 14.30 15.90 13.90 15.20 8.61 12.50 13.00 11.70 18.00
      Ba 93.60 96.20 608.00 827.00 469.00 274.00 739.00 175.00 976.00 65.70
      La 16.70 22.50 54.30 63.60 63.10 36.20 35.10 38.20 35.60 66.10
      Ce 36.10 47.10 109.00 128.00 127.00 75.30 72.70 79.60 71.30 131.00
      Pr 4.70 6.13 13.70 15.40 15.70 9.01 8.79 9.92 8.80 16.60
      Nd 18.00 23.00 48.10 54.90 53.70 30.60 32.30 35.30 31.10 55.80
      Sm 4.56 5.81 9.73 9.64 9.77 5.64 5.98 7.18 6.03 11.90
      Eu 0.14 0.16 1.23 1.22 1.19 0.63 0.94 0.41 0.56 0.33
      Gd 4.96 6.09 8.52 8.11 7.87 4.54 5.33 6.25 5.31 11.50
      Tb 1.00 1.23 1.41 1.36 1.25 0.73 0.87 1.05 0.89 2.04
      Dy 6.59 8.52 8.72 7.88 7.57 4.55 5.19 6.47 5.88 12.80
      Ho 1.50 1.94 1.79 1.58 1.56 1.00 1.03 1.35 1.22 2.63
      Er 4.40 5.84 5.25 4.56 4.46 3.15 2.85 4.12 3.69 7.65
      Tm 0.76 0.99 0.83 0.68 0.72 0.55 0.47 0.70 0.61 1.24
      Yb 5.06 6.51 5.47 4.53 4.59 3.80 3.30 5.15 4.16 7.90
      Lu 0.79 1.07 0.84 0.70 0.72 0.62 0.48 0.81 0.64 1.15
      Hf 3.89 4.18 6.09 6.68 5.46 4.03 5.55 3.51 4.81 7.07
      Ta 2.22 1.58 1.39 1.17 1.28 1.06 1.19 1.80 1.29 2.02
      Th 23.20 30.10 22.90 21.50 23.00 27.10 19.30 23.60 22.00 57.80
      U 4.72 6.21 4.74 3.56 6.08 5.38 3.94 4.41 4.33 8.04
      注:A/CNK=Al2O3/(CaO+Na2O+K2O)(摩尔比);TFe2O3为全铁.
      下载: 导出CSV

      表  3  川西石棉花岗岩Sm-Nd同位素分析结果

      Table  3.   Sm-Nd isotopic data for Shimian granite in western Sichuan

      样品号 Sm(μg/g) Nd(μg/g) 147Sm/144Nd 143Nd/144Nd±2σ εNd(t) fSm/Nd TDM(Ga) T2DM(Ga)
      04KD20-6 5.81 23.0 0.153 0 0.512 371±0.000 008 -0.63 -0.222 1.955 1.642
      04KD21-4 9.73 48.1 0.122 3 0.512 108±0.000 009 -2.55 -0.378 1.736 1.792
      04KD23-1 9.64 54.9 0.106 1 0.512 076±0.000 011 -1.48 -0.460 1.521 1.708
      04KD24-2 5.64 30.6 0.111 4 0.512 086±0.000 011 -1.84 -0.434 1.585 1.736
      98KD71 5.98 32.3 0.111 9 0.512 306±0.000 009 +2.38 -0.431 1.268 1.406
      98KD86 11.9 55.8 0.128 9 0.512 254±0.000 010 -0.38 -0.346 1.606 1.621
      注:t=0.818 Ga;Sm、Nd含量采用ICP-MS测试结果;TDM=1/λSm×ln{[(143Nd/144Nd)sample-0.513 15]/[(147Sm/144Nd)sample-0.213 7]+1};T2DM=TDM-(TDM-T)×(fCC-fS)/(fCC-fDM);其中:fSfCCfDM分别为样品、平均大陆地壳和亏损地幔的fSm/Nd值,fSm/Nd=(147Sm/144Nd)sample/(147Sm/144Nd)CHUR-1,(147Sm/144Nd)CHUR=0.196 7;fCC=-0.4;fDM=0.085 92.
      下载: 导出CSV
    • [1] Barbarin, B., 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46(3): 605-626. doi: 10.1016/S0024-4937(98)00085-1
      [2] Black, L.P., Kamo, S.L., Allen, C.M., et al., 2003. TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology, 200(1-2): 155-170. doi: 10.1016/S0009-2541(03)00165-7
      [3] Broska, I., Williams, C.T., Uher, P., et al., 2004. The geochemistry of phosphorus in different granite suites of the western Carpathians, Slovakia: the role of apatite and P-bearing feldspar. Chemical Geology, 205(1-2): 1-15. doi: 10.1016/j.chemgeo.2003.09.004
      [4] Chappell, B.W., 1999. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos, 46(3): 535-551. doi: 10.1016/S0024-4937(98)00086-3
      [5] Du, L.L., Geng, Y.S., Yang, C.H., et al., 2005. Geochemistry and SHRIMP U-Pb zircon chronology of basalts from the Yanbian Group in the western Yangtze block. Acta Geologica Sinica, 79(6): 805-813 (in Chinese with English abstract). http://www.researchgate.net/profile/Yuruo_Shi/publication/279606357_Geochemistry_and_SHRIMP_U-Pb_zircon_chronology_of_basalts_from_the_Yanbian_Group_in_the_Western_Yangtze_block/links/5719d89f08aed43f63235b41.pdf
      [6] Du, L.L., Geng, Y.S., Yang, C.H., et al., 2006. The stipulation of Neoproterozoic TTG in western Yangtze block and its significance. Acta Petrologica et Mineralogica, 25 (4): 273-281 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YSKW200604001.htm
      [7] Du, L.L., Geng, Y.S., Yang, C.H., et al., 2007. New understanding on Kangding Group on western margin of Yangtze block: evidence from geochemistry and chronology. Acta Geologica Sinica, 81(11): 1562-1577 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZXE200711012&dbcode=CJFD&year=2007&dflag=pdfdown
      [8] Frost, B.R., Barnes, C.G., Collins, W.J., et al., 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42(11): 2033-2048. doi: 10.1093/petrology/42.11.2033
      [9] Geng, Y.S., Yang, C.H., Du, L.L., et al., 2007. Chronology and tectonic environment of the Tianbaoshan formation: new evidence from zircon SHRIMP U-Pb age and geochemistry. Geological Review, 53(4): 556-563 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200704014.htm
      [10] Goto, A., Tatsumi, Y., 1994. Quantitative analysis of rock samples by an X-ray fluorescence spectrometer (Ⅰ). The Rigaku Journal, 11(1): 40-59. http://www.rigaku.com/downloads/journal/Vol13.2.1996/goto.pdf
      [11] Huang, X.L., Xu, Y.G., Li, X.H., et al., 2008. Petrogenesis and tectonic implications of Neoproterozoic, highly fractionated A-type granites from Mianning, South China. Precambrian Research, 165(3-4): 190-204. doi: 10.1016/j.precamres.2008.06.010
      [12] Li, X.H., Li, Z.X., Ge, W., et al., 2003a. Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca. 825 Ma? Precambrian Research, 122(1): 45-83. doi: 10.1016/S0301-9268(02)00207-3
      [13] Li, X.H., Li, Z.X., Zhou, H.W., et al., 2003b. SHRIMP U-Pb zircon age, geochemistry and Nd isotope of the Guandaoshan pluton in SW Sichuan: petrogenesis and tectonic significance. Science in China (Series D), 46(Suppl.): 73-83. doi: 10.1360/03dz9029
      [14] Li, Z.X., Li, X.H., Kinny, P.D., et al., 2003c. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precambrian Research, 122(1): 85-109. doi: 10.1016/S0301-9268(02)00208-5
      [15] Li, X.H., Li, Z.X., Sinclair, J.A., et al., 2006. Revisiting the "Yanbian terrane": implications for Neoproterozoic tectonic evolution of the western Yangtze block, South China. Precambrian Research, 151(1-2): 14-30. doi: 10.1016/j.precamres.2006.07.009
      [16] Li, X.H., Li, Z.X., Zhou, H.W., et al., 2002a. U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian rift of South China: implications for the initial rifting of Rodinia. Precambrian Research, 113(1): 135-154. doi: 10.1016/S0301-9268(01)00207-8
      [17] Li, X.H., Li, Z.X., Zhou, H.W., et al., 2002b. U-Pb Zircon geochronological, geochemical and Nd isotopic study of Neoproterozoic basaltic magmatism in western Sichuan: petrogenesis and geodynamic implications. Earth Science Frontiers, 9(4): 329-338 (in Chinese with English abstract). http://www.researchgate.net/publication/313507865_U-Pb_zircon_geochronological_geochemical_and_Nd_isotopic_study_of_Neoproterozoic_basaltic_magmatism_in_western_Sichuan_Petrogenesis_and_geodynamic_implications
      [18] Li, Z.X., Bogdanova, S.V., Collins, A.S., et al., 2008. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Research, 160(1-2): 179-210. doi: 10.1016/j.precamres.2007.04.021
      [19] Li, Z.X., Li, X.H., Kinny, P.D., et al., 1999. The breakup of Rodinia: did it start with a mantle plume beneath South China? Earth Planet. Sci. Lett., 173(3): 171-181. doi: 10.1016/S0012-821X(99)00240-X
      [20] Li, Z.X., Zhang, L.H., Powell, C. McA., et al., 1995. South China in Rodinia: part of the missing link between Australia-East Antarctica and Laurentia? Geology, 23: 407-410. doi:10.1130/0091-7613(1995)023<0407:SCIRPO>2.3.CO
      [21] Liang, X.R., Wei, G.J., Li, X.H., et al., 2003. Precise measurement of 143Nd/144Nd and Sm/Nd ratios using multiple-collectors inductively coupled plasma-mass spectrometer (MC-ICPMS). Geochimica, 32(1): 91-96 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200301012.htm
      [22] Lin, G.C., 2008. Petrochemical characteristic of Wasigou complex in western Yangtze block: petrogenetic and tectonic significance. Acta Petrologica et Mineralogica, 27(5): 398-404 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200805003.htm
      [23] Lin, G.C., Li, X.H., Li, W.X., 2007. SHRIMP U-Pb zircon age, geochemistry and Nd-Hf isotope of Neoproterozoic mafic dyke swarms in western Sichuan: petrogenesis and tectonic significance. Science in China (Series D), 50(1): 1-16. doi: 10.1007/s11430-007-2018-0
      [24] Liu, Y., Liu, H.C., Li, X.H., 1996. Simultaneous and precise determination of 40 trace elements in rock samples using ICP-MS. Geochimica, 25(6): 552-558 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX606.003.htm
      [25] Middlemost, E.A.K., 1994. Naming materials in the magma/igneous rock system. Earth-Sci. Rev., 37(3-4): 215-224. doi: 10.1016/0012-8252(94)90029-9
      [26] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Geology, 25(4): 956-983. http://www.onacademic.com/detail/journal_1000036081083410_b7ad.html
      [27] Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib. Mineral. Petrol., 58(1): 63-81. doi: 10.1007/BF00384745
      [28] Roberts, M.P., Clements, J.D., 1993. Origin of high-potassium, talc-alkaline, I-type granitiods. Geology, 21(9): 825-828. doi:10.1130/0091-7613(1993)021<0825:OOHPTA>2.3.CO
      [29] Shen, W.Z., Li, H.M., Xu, S.J., et al., 2000. U-Pb chronological study of zircons from the Huangcaoshan and Xiasuozi granite in the western margin of Yangtze plate. Geological Journal of China Universities, 6(3): 412-416 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200003005.htm
      [30] Shen, W.Z., Xu, S.J., Gao, J.F., et al., 2002. Sm-Nd dating and Nd-Sr isotopic characteristics of the Shimian ophiolitesuite, Sichuan Province. Chinese Science Bulletin, 47(22): 1897-1901. doi: 10.1360/02tb9415
      [31] Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J., eds., Magmatism in the ocean basins. Geol. Soc. Spec. Publ., 42: 313-345.
      [32] Tanaka, T., Togashi, S., Kamioka, H., et al., 2000. JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chemical Geology, 168(3-4): 279-281. doi: 10.1016/S0009-2541(00)00198-4
      [33] Whalen, J.B., Currie, K.L., Chappell, B.W., 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol., 95(4): 407-419. doi: 10.1007/BF00402202
      [34] Wu, F.Y., Li, X.H., Yang, J.H., et al., 2007. Discussions on the petrogenesis of granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=YSXB200706000&dbcode=CJFD&year=2007&dflag=pdfdown
      [35] Xu, S.J., Shen, W.Z., Wang, R.C., et al., 1998. U-Pb dating of zircon grains from the ore-bearing plagioclase amphibolite in the Dashuigou Te deposit. Chinese Science Bulletin, 43(17): 1486-1489. doi: 10.1007/BF02884130
      [36] Xue, H.M., Liu, F.L., Meng, F.C., 2006. Petrogenesis of Neoproterozoic granitoids from the Wulian region in the Sulu orogen: Sr-Nd isotopic constraints. Earth Science—Journal of China University of Geosciences, 31(4): 497-504 (in Chinese with English abstract).
      [37] Zhang, Q., Pan, G.Q., Li, C.D., et al., 2007. Are discrimination diagrams always indicative of correct tectonic settings of granites? Some crucial questions on granite study (3). Acta Petrologica Sinica, 23(11): 2683-2698 (in Chinese with English abstract). http://www.researchgate.net/publication/281036698_Are_discrimination_diagrams_always_indicative_of_correct_tectonic_settings_of_granites_Some_crucial_questions_on_granite_study_3
      [38] Zhao, J.H., Zhou, M.F., 2007a. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): implications for subduction-related metasomatism in the upper mantle. Precambrian Research, 152(1-2): 27-47. doi: 10.1016/j.precamres.2006.09.002
      [39] Zhao, J.H., Zhou, M.F., 2007b. Neoproterozoic adakitic plutons and arc magmatism along the western margin of the Yangtze block, South China. The Journal of Geology, 115(6): 675-689. doi: 10.1086/52161
      [40] Zhao, X.F., Zhou, M.F., Li, J.W., et al., 2008. Association of Neoproterozoic A- and I-type granites in South China: implications for generation of A-type granites in a subduction-related environment. Chemical Geology, 257(1-2): 1-15. doi: 10.1016/j.chemgeo.2008.07.018
      [41] Zheng, Y.F., 2004. Position of South China in configuration of Neoproterozoic supercontinent. Chinese Science Bulletin, 49(8): 751-753. doi: 10.1007/BF02889741
      [42] Zhou, M.F., Kennedy, A.K., Sun, M., et al., 2002a. Neoproterozoic arc-related mafic intrusions along the northern margin of South China: implications for the accretion of Rodinia. The Journal of Geology, 110(5): 611-618. doi: 10.1086/341762
      [43] Zhou, M.F., Yan, D.P., Kennedy, A.K., et al., 2002b. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze block, South China. Earth Planet. Sci. Lett., 196(1-2): 51-67. doi: 10.1016/S0012-821X(01)00595-7
      [44] Zhou, M.F., Ma, Y.X., Yan, D.P., et al., 2006a. The Yanbian Terrane (southern Sichuan Province, SW China): a Neoproterozoic arc assemblage in the western margin of the Yangtze block. Precambrian Research, 144(1-2): 19-38. doi: 10.1016/j.precamres.2005.11.002
      [45] Zhou, M.F., Yan, D.P., Wang, C.L., et al., 2006b. Subduction-related origin of the 750 Ma Xuelongbao adakitic complex (Sichuan Province, China): implications for the tectonic setting of the giant Neoproterozoic magmatic event in South China. Earth Planet. Sci. Lett., 248(1-2): 286-300. doi: 10.1016/j.epsl.2006.05.032
      [46] Zhou, M.F., Zhao, J.H., Xia, X.P., et al., 2007. Comment on "Revisiting the "Yanbian terrane": implications for Neoproterozoic tectonic evolution of the western Yangtze block, South China" Precambrian Res. 151(2006)14-30. Precambrian Research, 155(3-4): 313-317. doi: 10.1016/j.precamres.2006.11.013
      [47] Zhu, W.G., Deng, H.L., Liu, B.G., et al., 2004. The age of the Gaojiacun mafic-ultramafic intrusive complex in the Yanbian area, Sichuan Province: geochronological constraints by U-Pb dating of single zircon grains and 40Ar/39Ar dating of horblende. Chinese Science Bulletin, 49(10): 1077-1085. doi: 10.1360/03wd0570
      [48] Zhu, W.G., Liu, B.G., Deng, H.L., et al., 2004. Advance in the study of Neoproterozoic mafic-ultramafic rocks in the western margin of the Yangtze craton. Bulletin of Mineralogy, Petrology and Geochemistry, 23(3): 255-263 (in Chinese with English abstract).
      [49] Zhu, W.G., Zhong, H., Li, X.H., et al., 2008. SHRIMP zircon U-Pb geochronology, elemental, and Nd isotopic geochemistry of the Neoproterozoic mafic dykes in the Yanbian area, SW China. Precambrian Research, 164(1-2): 66-85. doi: 10.1016/j.precamres.2008.03.006
      [50] 杜利林, 耿元生, 杨崇辉, 等, 2005. 扬子地台西缘盐边群玄武质岩石地球化学特征及SHRIMP锆石U-Pb年龄. 地质学报, 79(6): 805-813. doi: 10.3321/j.issn:0001-5717.2005.06.009
      [51] 杜利林, 耿元生, 杨崇辉, 等, 2006. 扬子地台西缘新元古代TTG的厘定及其意义. 岩石矿物学杂志, 25(4): 273-281. doi: 10.3969/j.issn.1000-6524.2006.04.002
      [52] 杜利林, 耿元生, 杨崇辉, 等, 2007. 扬子地台西缘康定群的再认识: 来自地球化学和年代学证据. 地质学报, 81(11): 1562-1577. doi: 10.3321/j.issn:0001-5717.2007.11.011
      [53] 耿元生, 杨崇辉, 杜利林, 等, 2007. 天宝山组形成时代和形成环境——锆石SHRIMP U-Pb年龄和地球化学证据. 地质论评, 53(4): 556-563. doi: 10.3321/j.issn:0371-5736.2007.04.014
      [54] 李献华, 李正祥, 周汉文, 等, 2002b. 川西新元古代玄武质岩浆岩的锆石U-Pb年代学、元素和Nd同位素研究: 岩石成因与地球动力学意义. 地学前缘, 9(4): 329-338. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200204018.htm
      [55] 梁细荣, 韦刚健, 李献华, 等, 2003. 利用MC-ICPMS精确测定143Nd/144Nd和Sm/Nd比值. 地球化学, 32(1): 91-96. doi: 10.3321/j.issn:0379-1726.2003.01.013
      [56] 林广春, 2008. 扬子西缘瓦斯沟花岗岩的元素-Nd同位素地球化学——岩石成因与构造意义. 岩石矿物学杂志, 27(5): 398-404. doi: 10.3969/j.issn.1000-6524.2008.05.003
      [57] 刘颖, 刘海臣, 李献华, 1996. 用ICP-MS准确测定岩石样品中的40余种微量元素. 地球化学, 25(6): 552-558. doi: 10.3321/j.issn:0379-1726.1996.06.004
      [58] 沈渭洲, 李惠民, 徐士进, 等, 2000. 扬子板块西缘黄草山和下索子花岗岩体锆石U-Pb年代学研究. 高校地质学报, 6(3): 412-416. doi: 10.3969/j.issn.1006-7493.2000.03.006
      [59] 吴福元, 李献华, 杨进辉, 等, 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001
      [60] 薛怀民, 刘福来, 孟繁聪, 2006. 苏鲁造山带五莲新元古代花岗岩类成因的Sr-Nd同位素证据. 地球科学——中国地质大学学报, 31(4): 497-504. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200604005.htm
      [61] 张旗, 潘国强, 李承东, 等, 2007. 花岗岩构造环境问题: 关于花岗岩研究的思考之三. 岩石学报, 23(11): 2683-2698. doi: 10.3969/j.issn.1000-0569.2007.11.002
      [62] 朱维光, 刘秉光, 邓海琳, 等, 2004. 扬子地块西缘新元古代镁铁-超镁铁质岩研究进展. 矿物岩石地球化学通报, 23(3): 255-263. doi: 10.3969/j.issn.1007-2802.2004.03.013
    • 加载中
    图(6) / 表(3)
    计量
    • 文章访问数:  146
    • HTML全文浏览量:  91
    • PDF下载量:  2
    • 被引次数: 0
    出版历程
    • 收稿日期:  2009-10-26
    • 网络出版日期:  2021-11-10
    • 刊出日期:  2010-07-01

    目录

      /

      返回文章
      返回