LA-ICP-MS Zircon U-Pb Dating of Kubusunan Granodiorite and the Enclaves from Kalamaili Area in Eastern Junggar, Xinjiang, and Its Geological Implications
-
摘要: LA-ICP-MS锆石U-Pb测年结果显示, 库布苏南花岗闪长岩形成时代为287±2 Ma, MSWD=0.15, 包体年龄为286±3 Ma, MSWD=0.22, 在误差范围内完全一致, 这就排除了暗色包体是来源于深部变质岩熔融残留体或浅部围岩捕虏体的可能性, 同时也排除了基性岩浆在花岗质岩浆固结后才侵入的可能, 为岩浆混合作用的存在提供最有力的证据.地球化学研究表明, 包体富集基性组分Ti、Zr、Nb、Hf等高场强元素以及稀土元素, 包体表现为与寄主岩石既相互联系又受其制约, 库布苏南花岗闪长岩体具有低87Sr/86Sr初始比值和高正εNd(t)值, 表明花岗岩的来源有地幔物质参与, 包体是过冷的镁铁质岩浆混入到中酸性岩浆中经快速冷凝的结果.库布苏南花岗闪长岩形成的时代略晚于东准噶尔乌伦古河碱性花岗岩和卡拉麦里碱性花岗岩的形成时代(300 Ma左右), 均为准噶尔周边地区后碰撞伸展构造背景下岩浆活动的产物, 其形成和演化标志了准噶尔地区后碰撞幔源岩浆底侵作用导致大陆地壳垂向生长的过程.Abstract: LA-ICP-MS zircon U-Pb dating of the Kubusunan granodiorite and its enclaves in the Kalamaili area of the eastern Junggar indicates that the isotopic age of the granodiorite is 287±2 Ma (MSWD=0.15), and that of its enclaves is 286±3 Ma (MSWD=0.22). The fact that they are the same in error range, showing that granodiorite and enclaves were formed at the same age, ruling out the possibility that the dark microgranule enclaves came from the solid metamorphic rock melt remaining in deep crust, or xenoliths from wall rock in the upper crust, at the same time, ruling out the possibility that the basic magma invaded solidified ganite magma. It presents strong evidence for the crust and mantle magma hybrid. Petrological and geochemical studies reveal the relationship between the enclaves and the host rock and it is found that they are related and restricted with each other. The enclaves are rich in basic ingredients HFSE(such as Ti, Zr, Nb and Hf) and REE, Kubusunan granodiorite characteristics of low 87Sr/86Sr initial values and high εNd(t) values, indicating that granites originated partly from mantle magma. The large number of microgranular dioritic enclaves is direct evidence of crust-mantle magma hybrid. Kubusunan granodiorite was formed later than the Ulungur river and Kalamaili alkali granite (300 Ma±) resulting from post-collision magma activity surrounding eastern Junggar, whose formation and evolution stands for continental crust growth caused by post-collision magma underplating in eastern Junggar.
-
图 1 卡拉麦里构造带库布苏南岩体分布
1.第四系;2.侏罗系;3.石炭系姜巴斯套组;4.石炭系黑山头组;5.花岗闪长岩;6.碱长花岗岩;7.花岗岩带;8.超动接触关系;9.脉动接触关系;10.侵入接触;11.断裂及编号;12.构造带;13.样品位置及同位素年龄;14.构造区带界线;15.国界;Ⅰ1.阿尔泰构造带;Ⅰ2.阿尔曼太构造带;Ⅱ1.卡拉麦里构造带;Ⅱ2.准噶尔盆地;Ⅱ3.将军庙构造带;①额尔齐斯断裂;②阿尔曼太断裂;③卡拉麦里断裂
Fig. 1. Geological sketch of Kubusunan intrusion in Kalamaili tectonic belt, eastern Junggar
图 4 库布苏南岩体及包体QAP图解
Q.石英;A.碱性长石;P.斜长石;1a.石英岩;1b.富石英花岗岩;2.碱长花岗岩;3a.正长花岗岩;3b.二长花岗岩;4.花岗闪长岩;5.石英闪长岩(斜长花岗岩、奥长花岗岩);6.碱长正长岩;6*.石英碱长正长岩;7*.石英正长岩;7.正长岩;8*.石英二长岩;8.二长岩;9.二长闪长岩/二长辉长岩;9*.石英二长闪长岩/石英二长辉长岩;10.闪长岩/辉长岩/斜长岩;10*.石英闪长岩/石英辉长岩/石英斜长岩
Fig. 4. Q-A-P diagram of microgranular enclaves and host rock of the Kubusunan
图 6 包体和寄主花岗岩原始地幔标准化蛛网图(a)和稀土元素球粒陨石标准化图解(b)
原始地幔标准值引自Sun and McDonough(1989);球粒陨石标准化值来自Taylor and McLennan(1985)
Fig. 6. Primitive-mantle normalized spidergrams (a) and chondrite-normalized REE patterns (b) of the enclaves and host rock of the Kubusunan, Kalamaili area in eastern Junggar
表 1 库布苏南花岗闪长岩(Ⅳ25-1)和包体(Ⅳ25-2)LA-ICP-MS锆石U-Pb同位素分析结果
Table 1. LA-ICP-MS zircon U-Pb isotopic analysis of the Kubusunan granodiorite (Ⅳ25-1) and the microgranular enclave (Ⅳ25-2)
样品编号 同位素比值 同位素年龄(Ma) 同位素含量(μg/g) Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th Pb* Th U 比值 1σ 比值 1σ 比值 1σ 比值 1σ 年龄 1σ 年龄 1σ 年龄 1σ 年龄 1σ Ⅳ25-1-01 0.059 6 0.001 0 0.371 4 0.005 7 0.045 2 0.000 4 0.013 8 0.000 2 591 20 321 4 285 2 277 3 16.3 120.9 262.4 0.5 Ⅳ25-1-02 0.063 8 0.000 9 0.341 3 0.004 2 0.038 8 0.000 3 0.012 0 0.000 1 736 14 298 3 245 2 241 2 23.0 197.4 410.8 0.5 Ⅳ25-1-03 0.053 3 0.000 8 0.338 6 0.004 1 0.046 0 0.000 3 0.013 2 0.000 1 343 15 296 3 290 2 265 2 14.7 89.7 297.9 0.3 Ⅳ25-1-04 0.058 2 0.001 2 0.381 8 0.007 0 0.047 6 0.000 4 0.014 7 0.000 1 538 45 328 5 300 2 296 2 23.1 218.3 337.9 0.7 Ⅳ25-1-05 0.071 8 0.002 0 0.411 6 0.010 8 0.041 6 0.000 4 0.012 6 0.000 1 980 58 350 8 263 2 253 2 24.5 202.5 346.6 0.6 Ⅳ25-1-06 0.056 5 0.001 4 0.340 3 0.008 0 0.043 7 0.000 4 0.013 2 0.000 2 471 36 297 6 276 2 265 4 15.9 25.1 69.1 0.4 Ⅳ25-1-07 0.056 6 0.001 3 0.354 6 0.007 7 0.045 4 0.000 4 0.015 8 0.000 2 475 33 308 6 286 2 316 4 14.7 111.9 232.2 0.5 Ⅳ25-1-08 0.055 3 0.001 0 0.329 1 0.005 4 0.043 2 0.000 3 0.013 2 0.000 2 423 23 289 4 272 2 266 3 20.5 234.5 255.5 0.9 Ⅳ25-1-09 0.053 5 0.001 3 0.320 0 0.007 5 0.043 4 0.000 4 0.013 6 0.000 1 351 57 282 6 274 2 273 2 14.7 103.5 261.2 0.4 Ⅳ25-1-10 0.058 9 0.000 9 0.394 4 0.005 2 0.048 6 0.000 4 0.016 4 0.000 2 563 16 338 4 306 2 329 3 16.3 132.8 281.7 0.5 Ⅳ25-1-11 0.064 5 0.001 0 0.389 1 0.005 3 0.043 8 0.000 3 0.017 0 0.000 2 757 16 334 4 276 2 341 3 28.0 219.4 431.1 0.5 Ⅳ25-1-12 0.055 7 0.001 4 0.371 6 0.009 1 0.048 4 0.000 4 0.015 1 0.000 1 441 59 321 7 304 2 302 2 16.9 27.3 74.4 0.4 Ⅳ25-1-13 0.059 6 0.001 1 0.423 7 0.006 9 0.051 6 0.000 4 0.011 9 0.000 1 588 22 359 5 324 3 238 2 18.1 104.2 252.1 0.4 Ⅳ25-1-14 0.054 5 0.001 0 0.396 8 0.006 6 0.052 8 0.000 4 0.016 8 0.000 2 390 23 339 5 332 3 337 4 33.5 272.1 558.2 0.5 Ⅳ25-1-15 0.060 7 0.000 9 0.439 9 0.005 8 0.052 6 0.000 4 0.019 1 0.000 2 627 16 370 4 330 2 383 4 17.4 141.8 272.0 0.5 Ⅳ25-1-17 0.053 7 0.001 0 0.355 1 0.006 2 0.048 0 0.000 4 0.015 1 0.000 2 358 25 309 5 302 2 303 3 17.5 111.2 265.9 0.4 Ⅳ25-1-18 0.070 9 0.000 8 0.421 8 0.003 9 0.043 2 0.000 3 0.021 7 0.000 2 953 9 357 3 272 2 435 3 18.1 120.6 264.8 0.5 Ⅳ25-1-19 0.053 8 0.000 7 0.355 1 0.004 0 0.047 9 0.000 4 0.015 8 0.000 1 361 13 309 3 302 2 317 3 16.3 120.9 262.4 0.5 Ⅳ25-1-20 0.053 5 0.000 8 0.378 5 0.005 0 0.051 3 0.000 4 0.016 1 0.000 2 351 17 326 4 322 2 322 3 23.0 197.4 410.8 0.5 Ⅳ25-2-01 0.067 9 0.001 0 0.472 3 0.006 2 0.050 4 0.000 4 0.016 1 0.000 1 740 56 372 8 315 3 308 2 15.0 24.2 64.6 0.4 Ⅳ25-2-03 0.075 6 0.001 2 0.479 4 0.006 7 0.046 0 0.000 4 0.011 9 0.000 1 1 085 16 398 5 290 2 239 2 35.3 372.2 494.9 0.8 Ⅳ25-2-04 0.153 3 0.001 8 0.934 7 0.008 3 0.044 2 0.000 3 0.023 6 0.000 2 462 99 267 15 245 2 242 2 36.3 392.7 575.7 0.7 Ⅳ25-2-06 0.059 7 0.000 7 0.396 8 0.003 9 0.048 2 0.000 4 0.012 0 0.000 1 592 10 339 3 304 2 241 2 64.5 882.7 950.3 0.9 Ⅳ25-2-07 0.054 9 0.000 7 0.409 7 0.004 1 0.054 1 0.000 4 0.015 2 0.000 1 408 11 349 3 340 2 304 2 27.0 224.4 427.5 0.5 Ⅳ25-2-08 0.054 0 0.000 7 0.332 1 0.003 6 0.044 6 0.000 3 0.011 9 0.000 1 373 12 291 3 281 2 239 2 15.5 24.5 66.9 0.4 Ⅳ25-2-09 0.124 0 0.001 6 0.919 4 0.009 5 0.053 8 0.000 4 0.018 5 0.000 1 1 654 47 557 10 328 3 305 2 24.3 227.7 381.3 0.6 Ⅳ25-2-10 0.200 3 0.002 6 1.257 6 0.013 2 0.045 5 0.000 4 0.033 0 0.000 3 1 007 98 327 20 240 3 230 4 46.1 511.3 598.3 0.9 Ⅳ25-2-13 0.122 9 0.001 5 0.810 9 0.008 0 0.047 9 0.000 4 0.020 4 0.000 1 1 228 60 416 10 285 2 271 2 32.4 223.8 488.7 0.5 Ⅳ25-2-14 0.051 0 0.000 9 0.360 8 0.006 0 0.051 3 0.000 4 0.012 8 0.000 1 243 24 313 4 322 3 257 3 15.1 23.6 65.1 0.4 Ⅳ25-2-16 0.049 2 0.000 7 0.318 5 0.003 8 0.047 0 0.000 4 0.012 3 0.000 1 155 14 281 3 296 2 246 2 17.3 24.4 69.9 0.4 Ⅳ25-2-17 0.053 1 0.000 7 0.335 9 0.003 6 0.045 8 0.000 3 0.011 4 0.000 1 335 12 294 3 289 2 230 1 109.8 2 303.1 1 568.1 1.5 Ⅳ25-2-18 0.101 4 0.001 1 0.547 3 0.004 5 0.039 1 0.000 3 0.010 0 0.000 1 1 649 7 443 3 247 2 201 1 59.0 562.9 711.3 0.8 Ⅳ25-2-19 0.047 2 0.000 5 0.304 3 0.002 9 0.046 7 0.000 3 0.011 5 0.000 1 59 11 270 2 294 2 231 1 19.1 159.6 277.3 0.6 Ⅳ25-2-20 0.052 6 0.000 6 0.361 2 0.003 3 0.049 8 0.000 4 0.012 5 0.000 1 310 10 313 2 313 2 251 2 76.9 1 211.5 1 172.5 1.0 表 2 库布苏南岩体暗色微粒包体与寄主岩主量元素含量(%)及CIPW标准矿物含量(%)
Table 2. Major element compositions (%) and CIPW minerals of enclaves and host rock of the Kubusunan
序号 类型 样品 SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 烧失 总量 1 寄主岩 D386 68.55 0.48 14.85 0.38 3.20 0.06 1.26 2.57 3.87 3.57 0.11 0.69 99.59 2 寄主岩 Ⅳ-27-1 67.75 0.44 15.40 0.90 2.66 0.06 1.45 3.23 4.11 3.10 0.12 0.41 99.64 3 寄主岩 Ⅵ-40-1 67.34 0.30 16.69 0.11 2.78 0.04 0.91 2.98 4.19 3.31 0.06 0.90 99.61 4 寄主岩 Ⅳ-25-1 67.06 0.50 15.26 0.86 2.87 0.07 1.63 3.41 3.96 3.31 0.13 0.57 99.62 5 寄主岩 Ⅳ-23-1 64.24 0.59 16.38 0.72 3.56 0.07 1.90 3.90 4.36 2.67 0.14 1.00 99.53 6 包体 Ⅳ-25-2 61.43 0.79 16.91 0.86 4.25 0.09 2.63 4.61 4.22 2.21 0.22 1.22 99.44 7 包体 Ⅳ-23-2 55.85 0.89 16.95 1.62 5.18 0.17 4.23 6.00 5.18 1.66 0.23 1.44 99.41 8 包体 D388 55.13 0.86 16.92 2.73 4.55 0.15 4.75 7.11 4.38 1.88 0.16 0.81 99.43 序号 类型 样品 Q Or Ab An C Hy Mt Il Di Ap 1 寄主岩 D386 23.34 21.35 33.07 12.22 0.18 8.12 0.56 0.91 0.00 0.25 2 寄主岩 Ⅳ-27-1 22.01 18.48 35.01 14.49 0.00 6.79 1.32 0.85 0.79 0.26 3 寄主岩 Ⅵ-40-1 20.91 19.83 35.88 14.65 0.91 6.97 0.16 0.57 0.00 0.16 4 寄主岩 Ⅳ-25-1 20.87 19.77 33.79 14.18 0.00 7.11 1.26 0.96 1.79 1.26 5 寄主岩 Ⅳ-23-1 16.06 16.03 37.4 17.45 0.00 9.43 1.06 1.13 1.12 1.06 6 包体 Ⅳ-25-2 12.93 13.31 36.31 21.03 0.00 12.37 1.27 1.52 0.78 0.50 7 包体 Ⅳ-23-2 0.00 10.02 44.69 18.44 0.00 13.13 2.40 1.73 8.66 0.50 8 包体 D388 1.21 11.28 37.54 21.21 0.00 11.79 4.01 1.65 10.96 0.35 表 3 库布苏南岩体暗色微粒包体与寄主岩微量和稀土元素含量(μg/g)
Table 3. Trace and REE element compositions (μg/g) of enclaves and host rock of the Kubusunan
序号 类型 样品 Ba Rb Sr Y Zr Nb Th Ga Ni 1 寄主岩 D386 432.47 134.07 253.02 30.71 155.01 8.84 15.22 19.22 7.70 2 寄主岩 Ⅳ-27-1 406.23 102.40 349.30 17.94 149.31 7.31 12.41 17.21 9.18 3 寄主岩 Ⅵ-40-1 488.01 104.41 302.24 22.25 86.53 5.86 12.01 18.09 8.04 4 寄主岩 Ⅳ-25-1 416.04 108.07 326.31 20.13 112.04 7.86 8.76 19.23 11.21 5 寄主岩 Ⅳ-23-1 410.25 81.30 308.08 20.41 123.49 6.16 11.30 20.44 11.93 6 包体 Ⅳ-25-2 468.09 58.60 383.42 24.09 149.21 8.35 5.08 19.42 12.08 7 包体 Ⅳ-23-2 178.49 97.40 343.05 31.81 141.35 8.83 8.66 28.31 19.12 8 包体 D388 478.20 58.70 408.02 36.53 85.09 7.35 5.74 42.80 34.33 序号 类型 样品 Cr Hf Sc Ta Co Li Be B W 1 寄主岩 D386 38.52 5.08 7.82 1.79 8.31 42.31 3.08 12.92 1.20 2 寄主岩 Ⅳ-27-1 10.71 4.64 6.47 0.98 9.26 53.08 2.58 14.07 1.32 3 寄主岩 Ⅵ-40-1 15.42 3.00 4.38 0.51 6.12 31.51 2.73 13.83 1.56 4 寄主岩 Ⅳ-25-1 21.52 3.82 7.32 0.81 10.61 54.44 2.72 12.14 1.43 5 寄主岩 Ⅳ-23-1 48.13 4.31 8.68 0.53 11.82 27.32 2.60 18.43 1.10 6 包体 Ⅳ-25-2 26.23 4.32 10.71 1.22 15.31 54.71 2.20 13.61 1.02 7 包体 Ⅳ-23-2 46.81 4.20 19.82 0.70 22.60 39.82 3.84 28.83 3.22 8 包体 D388 87.72 2.45 21.33 0.65 25.31 27.5 1.55 23.21 0.34 序号 类型 样品 Sn Mo La Ce Pr Nd Sm Eu Gd 1 寄主岩 D386 18.02 0.85 23.81 48.91 6.46 23.60 5.16 0.95 5.34 2 寄主岩 Ⅳ-27-1 8.20 0.76 16.32 32.93 4.37 16.01 3.49 0.91 3.55 3 寄主岩 Ⅵ-40-1 11.03 1.23 18.91 38.82 4.95 17.62 3.97 1.15 4.03 4 寄主岩 Ⅳ-25-1 9.16 0.64 16.14 33.30 4.50 17.19 3.63 0.94 3.77 5 寄主岩 Ⅳ-23-1 10.50 0.86 16.43 35.61 4.83 17.92 3.86 1.11 3.90 6 包体 Ⅳ-25-2 5.60 0.72 17.83 37.41 5.22 20.81 4.74 1.34 4.57 7 包体 Ⅳ-23-2 22.03 0.66 20.01 49.84 7.67 29.14 6.17 1.04 6.05 8 包体 D388 14.01 0.10 20.22 52.90 6.88 29.13 6.74 2.21 6.73 序号 类型 样品 Tb Dy Ho Er Tm Yb Lu ∑ δEu 1 寄主岩 D386 0.97 5.24 1.10 3.28 0.63 4.17 0.61 160.03 0.55 2 寄主岩 Ⅳ-27-1 0.60 3.08 0.65 1.95 0.36 2.48 0.37 104.43 0.78 3 寄主岩 Ⅵ-40-1 0.71 3.86 0.80 2.35 0.44 3.04 0.44 123.31 0.87 4 寄主岩 Ⅳ-25-1 0.66 3.46 0.71 2.17 0.41 2.83 0.41 110.09 0.77 5 寄主岩 Ⅳ-23-1 0.68 3.55 0.72 2.17 0.38 2.64 0.38 114.13 0.87 6 包体 Ⅳ-25-2 0.82 4.28 0.88 2.55 0.45 2.97 0.43 128.03 0.87 7 包体 Ⅳ-23-2 1.03 5.28 1.08 3.25 0.63 4.30 0.63 167.35 0.49 8 包体 D388 1.22 7.04 1.46 4.98 0.66 4.11 0.69 181.27 0.98 -
[1] Allen, C.M., 1991. Local equilibrium of mafic enclaves and granitoids of the Turtle pluton, Southeast California: mineral, chemical and isotopic evidence. Am. Mineral., 76: 574-588. http://minsocam.org/ammin/AM76/AM76_574.pdf [2] Andersen, T., 2002. Correction of common lead in U-Pb analysis that do not report 204Pb. Chemical Geology, 192(1-2): 59-79. doi: 10.1016/S0009-2541(02)00195-X [3] Ballard, J.R., Palin, J.M., Williams, I.S., et al., 2001. Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copper deposit of northern Chile by ELA-ICPMS and SHRIMP. Geology, 29(5): 383-386. doi:10.1130/0091-7613(2001)029<0383:TAOPIR>2.0.co [4] Barbarin, B., 1988. Field evidence for successive mixing and mingling between the Piloard diorite and the Saint-Julien-La-Vetre monzogranite (Nord-Forez, Massif Central, France). Can. J. Earth Sci., 25: 49-59. doi: 10.1139/e88-005 [5] Barbarin, B., Didier, J., 1992. Genesis and evolution of mafic microgranular enclaves through various types of interactions between coexisting felsic and mafic magmas. Trans. R. Soc. Edinburgh Earth Sci., 83: 145-153. doi: 10.1017/S0263593300007835 [6] Bi, C.S., Shen, X.Y., Xu, Q.S., 1994. Isotope geology of the Beilekuduke tin metallogenic belt in Xinjiang. Geosciences of Xinjiang, No. 5. Geological Publishing House, Beijing, 106-119 (in Chinese with English abstract). [7] Claesson, S., Vetrin, V., Bayanova, T., et al., 2000. U-Pb zircon age from a Devonian carbonatite dyke, Kola peninsula, Russia: a record of geological evolution from the Archaean to the Palaeozoic. Lithos, 51(1-2): 95-108. doi: 10.1016/S0024-4937(99)00076-6 [8] Compston, W., Williams, I.S., Kirschvink, J.L., et al., 1992. Zircon U-Pb ages for the Early Cambrian time-scale. Journal of Geological Society, London, 149(2): 171-184. doi: 10.1144/gsjgs.149.2.0171 [9] Didier, J., 1987. Contribution of enclaves studies to the understanding of origin and evolution of granitic magmas. Geol. Rundsch., 76(1): 41-50. doi: 10.1007/BF01820572 [10] Didier, J., Barbarin, B., 1991. Macroscopic features of mafic microgranular enclaves. In: Didier, J., Barbarin, B., eds., Enclaves and granite petrology. Elsevier, Amsterdam, 253-261. [11] Elburg, M.A., 1996. Evidence of isotopic equilibration between microgranitoid enclaves and host granodiorite, Warburton Granodiorite, Lachlan fold belt, Australia. Lithos, 38(1-2): 1-22. doi: 10.1016/0024-4937(96)00003-5 [12] Gao, J., Long, L.L., Qian, Q., et al., 2006. South Tianshan: a Late Paleozoic or a Triassic orogen? Acta Petrologica Sinica, 22(5): 1049-1061 (in Chinese with English abstract). [13] Gao, S., Liu, X.M., Yuan, H.L., et al., 2002. Analysis of forty-two major and trace elements of USGS and NIST SRM Glasses by LA-ICPMS. Geostand Newsl., 22: 181-195. doi: 10.1111/j.1751-908X.2002.tb00886.x [14] Giorgio, R., Maurizio, M., Vicente, A., et al., 1998. Petrogenesis of the Paleoproterozoic basalt-andesite-rhyolite dyke association in the Carajas region, Amazonian craton. Lithos, 43(4): 235-265. doi: 10.1016/S0024-4937(98)00015-2 [15] Gradstain, F.M., Ogg, J.G., Smith, A.G., 2004. A geological time scale. Cambridge University Press, Cambridge, 589. [16] Gu, L.X., Zhu, Q., Hu, S. X, et al., 1994. Geological characters and origin of the Kelameili-Harlik alkali granite belt. Xinjiang. Geosciences of Xinjiang, No. 2. Geological Publishing House, Beijing, 47-55 (in Chinese with English abstract). [17] Han, B.F., He, G.Q., Wang, S.G., 1999. Post-collisional mantle-derived magmatism, underplating and implications for basement of the Junggar basin. Science in China (Series D), 29(1): 16-21 (in Chinese). doi: 10.1007/BF02878509 [18] Han, B.F., He, G.Q., Wu, T.R., et al., 2004a. Zircon U-Pb dating and geochemical features of Early Paleozoic granites from Tianshan, Xinjiang: implications for tectonic evolution. Xinjiang Geology, 22(1): 4-11 (in Chinese with English abstract). [19] Han, B.F., Ji, J.Q., Song, B., et al., 2004b. SHRIMP zircon U-Pb ages of Kalatongke No. 1 and Huangshandong Cu-Ni-bearing mafic-ultramafic complexes, North Xinjiang, and geological implications. Chinese Science Bulletin, 49(22): 2324-2328 (in Chinese). doi: 10.1360/csb2004-49-22-2324 [20] Han, B.F., Ji, J.Q., Song, B., et al., 2006. Late Paleozoic vertical growth of continental crust around the Junggar basin, Xinjiang, China (Part Ⅰ): timing of post-collisional plutonism. Acta Petrologica Sinica, 22(5): 1077-1086 (in Chinese with English abstract). [21] Han, B.F., Wang, S.G., Jahn, B.M., et al., 1997. Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China: geochemistry and Nd-Sr isotopic evidence and implications for Phanerozoic crustal growth. Chemical Geology, 138(3-4): 135-159. doi: 10.1016/S0009-2541(97)00003-X [22] He, S.P., Wang, H.L., Chen, J.L., et al., 2008. LA-ICP-MS U-Pb zircon geochronology of basic dikes within Maxianshan rock group in the central Qilian mountains and its tectonic implications. Earth Science—Journal of China university of Geosciences, 33(1): 35-45 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.005 [23] Hong, D.W., Wang, S.G., Xie, X.L., et al., 2000. Genesis of positive ε(Nd, t) granitoids in the Da Hinggar Mts. Mongolia orogenic belt and growth continental crustal. Earth Science Frontiers, 7(2): 441-456 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dxqy200002016.htm [24] Horn, I., Rudnick, R.L., Mcdonough, W.F., 2000. Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation-ICPMS: application to U-Pb geochronology. Chemical Geology, 167: 405-425. doi: 10.1016/S0009-2541(99)00168-0 [25] Hu, A.Q., Jahn, B.M., Zhang, G., et al., 2000. Crustal evolution and Phanerozoic crustal growth in northern Xinjiang: Nd isotopic evidence. Part I. Isotopic characterization of basement rocks. Tectonophysics, 328(1-2): 15-52. doi: 10.1016/S0040-1951(00)00176-1 [26] Hu, A.Q., Wang, Z.G., Tu, G.C., 1997. Geological evolution, petrogenesis and metallogeny of North Xinjiang. Science Press, Beijing, l-246 (in Chinese). [27] Koler, J., Fonneland, H., Sylvester, P., et al., 2002. U-Pb dating of detrital zircons for sediment provenance studies—a comparison of laser ablation ICPMS and SIMS techniques. Chemical Geology, 182(2-4): 605-618. doi: 10.1016/S0009-2541(01)00341-2 [28] Li, H.M., Chen, H.H., Zhao, Y.J., 2009. The hydrocarbon charging events and ages in the volcanic reservoir of Santanghu basin. Earth Science—Journal of China University of Geosciences, 34(5): 785-791 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.087 [29] Li, J.Y., 1995. Main characteristics and emplacement processes of the East Junggar ophiolites, Xinjiang, China. Acta Petrologica Sinica, 11(Supp1. ): 73-84 (in Chinese with English abstract). [30] Li, J.Y., 2004. Late Neoproterozoic and Paleozoic tectonic framework and evolution of eastern Xinjiang, NW China. Geological Review, 50(3): 304-322 (in Chinese with English abstract). [31] Li, J.Y., Xiao, X.C., 1999. Brief reviews on some issues of framework and tectonic evolution of Xinjiang crust. Chinese Journal of Geology, 34(4): 405-419 (in Chinese with English abstract). [32] Li, J.Y., Xiao, X.C., Tang, Y.Q., et al., 1990. Main characteristics of Late Paleozoic plate tectonics in the southern part of East Junggar, Xinjiang. Geological Review, 36(4): 305-316 (in Chinese with English abstract). [33] Li, Y.J., Hu, K.L., Zhou, J.B., et al., 2010. Early Carboniferous volcano-magmatism and related mineralization in the Yishijilike Mountain, western Tianshan. Earth Science—Journal of China University of Geosciences, 35(2): 235-244 (in Chinese with English abstract). doi: 10.3799/dqkx.2010.023 [34] Li, Z.H., Han, B.F., Li, X.Z., et al., 2004. Microgranular dioritic enclaves in Junggar granites and their implications for the origin and evolution of post-collisional granitic magmatism in North Xinjiang. Acta Petrologica et Mineralogica, 23(3): 214-226 (in Chinese with English abstract). http://www.researchgate.net/publication/312450154_Microgranular_dioritic_enclaves_in_Junggar_granites_and_their_implications_for_the_origin_and_evolution_of_post-collisional_granitic_magmatism_in_North_Xinjiang [35] Lin, J.F., Yu, H.X., Yu, X.Q., et al., 2007. Zircon SHRIMP U-Pb dating and geological implication of the Sabei alkali-rich granite from eastern Junggar of Xinjiang, NW China. Acta Petrologica Sinica, 23(8): 1876-1884 (in Chinese with English abstract). [36] Liu, J.Y., Yuan, K.R., 1996. Alkali granites and deposits of the East Junggar area, Xinjiang. South Central University Technology Press, Changsha, 1-140 (in Chinese). [37] Liu, X.J., Xu, J.F., Hou, Q.Y., et al., 2007. Geochemical characteristics of Kalamaili ophiolite in East Junggar, Xinjiang: products of ridge subduction. Acta Petrologica Sinica, 23(7): 1591-1602 (in Chinese with English abstract). [38] Liu, X.M., Gao, S., Yuan, H.L., et al., 2002. Analysis of 42 major and trace elements in glass standard reference materials by 193 nm LA-ICP-MS. Acta Petrologica Sinica, 18(3): 408-418 (in Chinese with English abstract). http://www.oalib.com/paper/1471689 [39] Lu, Q.X., Liu, X.F., 1994. Isotope geochemical studies on tin-bearing granite rock belt in west part of eastern Junggar, Xinjiang. Geosciences of Xinjiang, No. 5. Geological Publishing House, Beijing, 132-143 (in Chinese). [40] Ludwig, K.R., 1991. Isoplot—a plotting and regression program for radiogenic-isotope data. US Geological Survey Open-File Report, 39: 91-445. http://ci.nii.ac.jp/naid/10008802019 [41] Ma, R.S., Shu, L.S., Sun, J.Q., 1997. Tectonic evolution and metallogeny of eastern Tianshan mountains. Geological Publishing House, Beijing, 1-202 (in Chinese). [42] Pidgeon, R.T., Nemchin, A.A., Hitchen, G.J., 1998. Internal structures of zircons from Archaean granites from the Darling Range batholith: implications for zircon stability and the interpretation of zircon U-Pb ages. Contributions to Mineralogy and Petrology, 132(3): 288-299. doi: 10.1007/s004100050422 [43] Silva, M.M.V.G., Neiva, A.M.R., Whitehouse, M.J., 2000. Geochemistry of enclaves and host granites from the Nelas area, central Portugal. Lithos, 50: 153-170. doi: 10.1016/S0024-4937(99)00053-5 [44] Su, Y.P., Tang, H.F., Liu, C.Q., et al., 2006. The determination and a preliminary study of Sujiqu aluminous A-type granites in East Junggar, Xinjiang. Acta Petrologica et Mineralogica, 25(3): 175-184 (in Chinese with English abstract). [45] Sun, G.H., Li, J.Y., Gao, L.M., et al., 2005. Zircon SHRIMP U-Pb age of a dioritic pluton in the Harlik Mountain, eastern Xinjiang, and its tectonic implication. Geological Review, 51(4): 463-469 (in Chinese with English abstract). [46] Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and process. In: Sauders, A.D., Norry, M.J., eds., Magmatism in the ocean basins. Geological Society Special Publication, 42: 313-345. [47] Tang, G.J., Wang, Q., Zhao, Z.H., et al., 2009. Geochronology and geochemistry of the ore-bearing porphyries in the Baogutu area (western Junggar): petrogenesis and their implications for tectonics and Cu-Au mineralization. Earth Science—Journal of China University of Geosciences, 34(1): 56-74 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.007 [48] Tang, H.F., Qu, W.J., Su, Y.P., et al., 2007a. Genetic connection of Sareshike tin deposit with the alkaline A-type granites of Sabei body in Xinjiang: constraint from isotopic ages. Acta Petrologica Sinica, 23(8): 1989-1997 (in Chinese with English abstract). [49] Tang, H.F., Su, Y.P., Liu, C.Q., et al., 2007b. Zircon U-Pb age of the plagiogranite in Kalamaili belt, northern Xinjiang and its tectonic implication. Geotectonica et Metallogenia, 31(1): 110-117 (in Chinese with English abstract). [50] Tang, H.S., Chen, Y.J., Liu, Y.L., et al., 2006. Isotope dating of the Belekuduke tin deposit in the eastern Junggar area. Mineral. Petrol., 26(2): 71-73 (in Chinese with English abstract). http://www.researchgate.net/profile/Yan-Jing_Chen/publication/281297609_Isotope_dating_of_the_Be'erkuduke_tin_deposit_in_the_eastern_Junggar_area/links/56a60d0708aeca0fddcb0d9a.pdf [51] Taylor, S.R., McLennan, S.M., 1985. The continental crust: its composition and evolution. Blackwell Scientific, Oxford Publications, 54: 209-230. [52] Tu, G.C., 1993. New improvement of solid earth sciences in northem Xinjiang. Science Press, Beijing, 1-546 (in Chinese). [53] Vernon, R.H., 1991. Interpretation of microstruture of microgranitoid enclaves. In: Didier, J., Barbarin, B., eds., Enclaves and granite petrology. Elsevier, Amsterdam, 277-292. [54] Wang, S.G., Han, B.F., Hong, D.W., et al., 1994. Geochemistry and tectonic significance of alkali granites along Ulungur River, Xinjiang. Scientia Geologica Sinica, 29(4): 373-383 (in Chinese with English abstract). [55] Wu, Y.B., Zheng, Y.F., 2004. Genesis of zircon and its constrainton interpretation of U-Pb age. Chinese Science Bulletin, 49(16): 1589-1604 (in Chinese). doi: 10.1360/csb2004-49-16-1589 [56] Xiao, W.J., Han, C.M., Yuan, C., et al., 2006. Unique Carboniferous-Permian tectonic-metallogenic framework of northern Xinjiang (NW China): constraints for the tectonics of the southern Paleoasian Domain. Acta Petrologica Sinica, 22(5): 1062-1076 (in Chinese with English abstract). [57] Yang, M., Peng, S.L., Yang, B., et al., 2005. Crustobody's movement and evolution in northern Xinjiang. Geotectonica et Metallogenia, 29(1): 113-121 (in Chinese with English abstract). [58] Zhu, Y.F., Zeng, Y.S., Gu, L.B., et al., 2006. Geochemistry of the rare metal-bearing pegmatite No. 3 vein and related granites in the Keketuohai region, Altay mountains, Northwest China. Journal of Asian Earth Sciences, 27(1): 61-77. doi: 10.1016/j.jseaes.2005.01.007 [59] Zhu, Y.F., Zhang, L.F., Gu, L.B., et al., 2005. The zircon SHRIMP chronology and trace element geochemistry of the Carboniferous volcanic rocks in western Tianshan mountains. Chinese Science Bulletin, 50(19): 2201-2212. doi: 10.1360/03wd0154 [60] Zhu, Y.F., Zhou, J., Zeng, Y.S., 2007. The Tianger (Bingdaban) shear zone hosted gold deposit, West Tianshan, NW China: petrographic and geochemical characteristics. Ore Geology Reviews, 32(1-2): 337-365. doi: 10.1016/j.oregeorev.2006.10.006 [61] Zorpi, M.J., Coulon, C., Orsini, J.B., et al., 1989. Magma mingling, zoning and emplacement in calc-alkaline granitoid plutons. Tectonophysics, 157(4): 315-329. doi: 10.1016/0040-1951(89)90147-9 [62] 毕承思, 沈湘元, 徐庆生, 1994. 贝勒库都克锡矿带同位素地质学研究. 新疆地质科学, 第5辑. 北京: 地质出版社, 106-119. [63] 高俊, 龙灵利, 钱青, 等, 2006. 南天山: 晚古生代还是三叠纪碰撞造山带?岩石学报, 22(5): 1049-1061. [64] 顾连兴, 褚强, 胡受奚, 等, 1994. 新疆卡拉麦里-哈尔里克碱性花岗岩带地质特征及成因. 新疆地质科学, 第2辑, 北京: 地质出版社, 47-55. [65] 韩宝福, 何国琦, 王式洸, 1999. 后碰幔源岩浆活动、底垫作用及准噶尔盆地基底的性质. 中国科学(D辑), 29(1): 16-21. [66] 韩宝福, 何国琦, 吴泰然, 等, 2004a. 天山早古生代花岗岩锆石U-Pb定年、岩石地球化学特征及其大地构造意义. 新疆地质, 22(1): 4-11. [67] 韩宝福, 季建清, 宋彪, 等, 2004b. 新疆喀拉通克和黄山东含铜镍矿镁铁-超镁铁杂岩体的SHRIMP锆石U-Pb年龄及其地质意义. 科学通报, 49(22): 2324-2328. [68] 韩宝福, 季建清, 宋彪, 等, 2006. 新疆准噶尔晚古生代陆壳垂向生长(Ⅰ): 后碰撞深成岩浆活动的时限. 岩石学报, 22(5): 1077-1086. [69] 何世平, 王洪亮, 陈隽璐, 等, 2008. 中祁连马衔山岩群内基性岩墙群锆石LA-ICP-MS U-Pb年代学及其构造意义. 地球科学——中国地质大学学报, 33(1): 35-45. [70] 洪大卫, 王式洸, 谢锡林, 等, 2000. 兴蒙造山带正ε(Nd, t)值花岗岩的成因和大陆地壳生长. 地学前缘, 7(2): 441-456. doi: 10.3321/j.issn:1005-2321.2000.02.012 [71] 胡霭琴, 王中刚, 涂光炽, 1997. 新疆北部地质演化及成岩成矿规律. 北京: 科学出版社, 1-246. [72] 李华明, 陈红汉, 赵艳军, 2009. 三塘湖盆地火山岩油气藏油气充注幕次及成藏年龄确定. 地球科学——中国地质大学学报, 34(5): 785-791. [73] 李锦轶, 1995. 新疆东准噶尔蛇绿岩的基本特征和侵位历史. 岩石学报, 11(增刊): 73-84. [74] 李锦轶, 2004. 新疆东部新元古代晚期和古生代构造格局及其演变. 地质论评, 50(3): 304-322. doi: 10.3321/j.issn:0371-5736.2004.03.015 [75] 李锦轶, 肖序常, 1999. 对新疆地壳结构与构造演化几个问题的简要评述. 地质科学, 34(4): 405-419. [76] 李锦轶, 肖序常, 汤耀庆, 等, 1990. 新疆东准噶尔卡拉麦里地区晚古生代板块构造的基本特征. 地质论评, 36(4): 305-316. doi: 10.3321/j.issn:0371-5736.1990.04.003 [77] 李永军, 胡克亮, 周继兵, 等, 2010. 西天山伊什基里克山早石炭世火山岩浆作用及其成矿. 地球科学——中国地质大学学报, 35(2): 235-244. [78] 李宗怀, 韩宝福, 李辛子, 等, 2004. 新疆准噶尔地区花岗岩中微粒闪长质包体特征及后碰撞花岗质岩岩浆起源和演化. 岩石矿物学杂志, 23(3): 214-226. doi: 10.3969/j.issn.1000-6524.2004.03.003 [79] 林锦富, 喻亨祥, 余心起, 等, 2007. 新疆东准噶尔萨北富碱花岗岩SHRIMP锆石U-Pb测年及其地质意义. 岩石学报, 23(8): 1876-1884. doi: 10.3969/j.issn.1000-0569.2007.08.009 [80] 刘家远, 袁奎荣, 1996. 新疆东准噶尔富碱花岗岩类及其成矿作用. 长沙: 中南工业大学出版社, 1-140. [81] 刘希军, 许继峰, 侯青叶, 等, 2007. 新疆东准噶尔克拉麦里蛇绿岩地球化学: 洋脊俯冲的产物. 岩石学报, 23(7): 1591-1602. doi: 10.3969/j.issn.1000-0569.2007.07.004 [82] 柳小明, 高山, 袁洪林, 等, 2002.193 nm LA-ICP-MS对国际地质标准参考物质中42种主量和微量元素的分析. 岩石学报, 18(3): 408-418. [83] 卢秋霞, 刘显凡, 1994. 新疆东准噶尔西部含锡花岗岩带的同位素地球化学研究. 新疆地质科学, 第5辑. 北京: 地质出版社, 132-143. [84] 马瑞士, 舒良树, 孙家齐, 1997. 东天山构造演化与成矿. 北京: 地质出版社, 1-202. [85] 苏玉平, 唐红峰, 刘丛强, 等, 2006. 新疆东准噶尔苏吉泉铝质A型花岗岩的确立及其初步研究. 岩石矿物学杂志, 25(3): 175-184. doi: 10.3969/j.issn.1000-6524.2006.03.002 [86] 孙桂华, 李锦轶, 高立明, 等, 2005. 新疆东部哈尔里克山闪长岩锆石SHRIMP U-Pb定年及其地质意义. 地质论评, 51(4): 463-469. doi: 10.3321/j.issn:0371-5736.2005.04.015 [87] 汤好书, 陈衍景, 刘玉林, 等, 2006. 东准噶尔贝尔库都克锡矿成矿年龄测定. 矿物岩石, 26(2): 71-73. doi: 10.3969/j.issn.1001-6872.2006.02.011 [88] 唐功建, 王强, 赵振华, 等, 2009. 西准噶尔包古图成矿斑岩年代学与地球化学: 岩石成因与构造、铜金成矿意义. 地球科学——中国地质大学学报, 34(1): 56-74. [89] 唐红峰, 屈文俊, 苏玉平, 等, 2007a. 新疆萨惹什克锡矿与萨北碱性A型花岗岩成因关系的年代学制约. 岩石学报, 23(8): 1989-1997. [90] 唐红峰, 苏玉平, 刘丛强, 等, 2007b. 新疆北部卡拉麦里斜长花岗岩的锆石U-Pb年龄及其构造意义. 大地构造与成矿学, 31(1): 110-117. [91] 涂光炽, 1993. 新疆北部固体地球科学新进展. 北京: 科学出版社, 1-546. [92] 王式洸, 韩宝福, 洪大卫, 等, 1994. 新疆乌伦河碱性花岗岩的地球化学及其构造意义. 地质科学, 29(4): 373-383. [93] 吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [94] 肖文交, 韩春明, 袁超, 等, 2006. 新疆北部石炭纪-二叠纪独特的构造-成矿作用: 对古亚洲洋构造域南部大地构造演化的制约. 岩石学报, 22(5): 1062-1076. [95] 杨牧, 彭省临, 杨斌, 等, 2005. 新疆北部壳体大地构造演化与运动初步研究. 大地构造与成矿学, 29(1): 113-121. doi: 10.3969/j.issn.1001-1552.2005.01.015