Genetic Relationship of the Huaixi Copper-Gold Deposit and the Caomen Alkaline Granite, Southeastern Zhejiang Province, China: Constraint from Geochronologies
-
摘要: 怀溪铜金矿床位于浙东南政和-大埔大断裂和长乐-南澳大断裂间坳陷区, 为典型的热液脉状充填型Cu-Au多金属矿床.曹门钾长花岗斑岩为矿区内最主要的侵入体, 化学成分显示为钾玄质岩系, 具高硅、富碱和铁、贫钙和镁的特征, SiO2含量为75.64%~78.00%, K2O为5.38%~5.92%, K2O/Na2O比值为1.94~2.72;富集Ga、Rb、Th、U等元素, 亏损Ba、Nb、Sr、P和Ti, REE具明显的负Eu异常, 总体呈现右倾"V"型配分模式.矿物组成及地球化学特征与浙闽沿海晚白垩世碱性花岗岩一致.曹门钾长花岗斑岩体锆石LA-ICP-MS U-Pb年代为102±1 Ma(MSDW=1.3), 而怀溪铜金矿床的石英流体包裹体Rb-Sr等时线年龄为101±2 Ma, 成岩成矿时代一致.成岩成矿时代的确定为成岩成矿具有密切成因关系提供了重要的年代学制约, 表明怀溪铜金矿床是东南沿海晚白垩世后碰撞弧后拉张构造-热事件的产物, 为华南中生代第3次大规模成矿的一部分.
-
关键词:
- 锆石LA-ICP-MS U-Pb定年 /
- 地质年代 /
- 碱性花岗岩 /
- 怀溪铜金矿床 /
- 浙江
Abstract: The Huaixi copper-gold deposit, located in depression area between the Zhenghe-Dapu and Changle-Nan'ao deep faults in southeastern Zhejiang Province, is a typical hydrothermal vein filling-metasomatic Cu-Au polymetallic deposit. The Caomen K-feldspar granite porphyry pulton is the dominant intrusion in the deposit. Petrography and chemical compositions show that it belongs to shoshonite series characterized by high silicon, and it is enriched in alkali and iron but depleted in phosphorus and titanium. Its SiO2 contents range from 75.64% to 78.00%, while K2O and K2O/Na2O ratios vary from 5.38% to 5.92% and 1.94 to 2.72 respectively. Ga, Rb, Th, U and Pb elements are enriched in the intrusion while Ba, Nb, Sr, P and Ti are depleted. REE is characterized with obvious negative anomalies with Eu/Eu* 0.06-0.13 and exhibits right-dipping "V" patterns with LREE enrichment. Its mineralogy and geochemistry are consistent with those of Late Cretaceous alkaline granites in the coastal areas of Zhejiang-Fujian. This study offers the first highly precise dating of the diagenesis and mineralization in the deposit. The dating of zircon from the Caomen alkaline granite pulton determined by LA-ICP-MS yields age of 102±1 Ma (MSDW=1.3), while Rb and Sr isotopic dating of fluid inclusions in quartz of the Huaixi copper-gold deposit yields isochron age of 101±2 Ma. The results suggest that Cu-Au mineralization was consistent with granite crystallization. The ages of diagenesis and mineralization provide an important chronological constraint for the close genetic relationship of the deposit and the Caomen intrusion. The Huaixi Cu-Au deposit, originated from back-arc extensional tectonic-heat event related to high angle subduction of the ancient Pacific plate, caused by northward movement of the Indian plate, is corresponding to the time of the third large-scale mineralization regionally in the Mesozoic. -
图 1 怀溪铜金矿床地质略图
a图据邱检生等(1999)和肖娥等(2007)修改;b图据陶奎元等(1998)修改;1.钾长花岗斑岩;2.斑状碱长花岗岩;3.辉绿玢岩;4.朝川组第一岩性段;5.朝川组第二岩性段;6.第四系;7.矿化带;8.矿体;9.断裂;①政和-大埔大断裂;②长乐-南澳大断裂
Fig. 1. Geological sketch map of the Huaixi copper-gold deposit
图 3 曹门岩体原始地幔标准化微量元素蛛网图(a)及球粒陨石标准化稀土配分曲线(b)
原始地幔和球粒陨石标准据Sun and McDonough(1989);浙闽沿海晚白垩世铝质A型花岗岩据董传万和彭亚鸣(1994)、邱检生等(1999, 2000b)和肖娥等(2007),共12个样品点
Fig. 3. Primitive mantle normalized trace element distributions (a) and chondrite normalized REE patterns (b) of the Caomen intrusion
图 4 曹门岩体的Ta/Yb-Th/Yb图解(据Pearce, 1982)
Fig. 4. Ta/Yb vs Th/Yb diagram of the Caomen intrusion
图 5 曹门岩体A型花岗岩判别图解
S、I、M与A型花岗岩划分,据Whalen et al.(1987);青田碱性花岗岩体据董传万和彭亚鸣(1994);桃花岛碱性花岗岩体据邱检生等(1996);瑶坑碱性花岗岩体据肖娥等(2007)
Fig. 5. A-type granite discrimination diagram of the Caomen intrusion
图 6 曹门岩体的R1-104 Ga/Al(a)和Nb-Y-Ce(b)图解(图例同图 5)
Fig. 6. R1-104 Ga/Al (a) and Nb-Y-Ce (b) diagrams of the Caomen intrusion
表 1 曹门钾长花岗斑岩体主量元素(%)和微量元素(10-6)分析结果
Table 1. Major and trace element compositions of the Caomen K-feldspar granite-porphyry pulton
样品号 SiO2 Fe2O3 Al2O3 FeO CaO MgO K2O Na2O TiO2 P2O5 MnO 灼失 总量 K2O/Na2O HX-1 76.51 0.92 12.39 0.51 0.08 0.13 5.92 2.90 0.18 0.01 0.04 0.19 99.81 2.04 HX-3 78.00 1.19 11.13 0.84 0.08 0.05 5.82 2.14 0.12 0.01 0.07 0.27 99.73 2.72 CM-2 75.64 1.48 11.69 1.98 0.17 0.09 5.38 2.77 0.15 0.02 0.08 0.02 99.48 1.94 CM-3 76.36 0.85 11.14 2.50 0.15 0.13 5.78 2.42 0.15 0.02 0.07 <0.01 99.56 2.39 样品号 Ga Rb Sr Y Zr Nb Ba La Ce Pr Nd Sm Eu Gd HX-1 16.91 226.84 52.74 41.87 258.04 27.08 90.71 48.97 106.14 12.01 44.92 8.75 0.36 7.35 HX-3 21.63 219.40 42.22 62.09 533.53 40.61 93.83 62.70 138.93 14.85 54.08 10.89 0.19 9.10 CM-2 22.38 215.12 65.36 73.26 634.84 41.67 111.31 67.55 155.09 16.89 63.61 12.43 0.37 11.21 CM-3 22.47 212.41 51.85 81.51 662.80 42.07 123.46 103.84 154.73 22.81 80.84 15.80 0.31 14.34 CM-3-2 22.34 210.23 50.87 80.32 665.11 42.94 121.06 100.67 149.58 22.02 79.21 15.18 0.33 13.88 样品号 Tb Dy Ho Er Tm Yb Lu Hf Ta Pb Th U ∑REE Eu/Eu* HX-1 1.19 7.12 1.42 4.22 0.65 4.28 0.65 7.95 1.72 10.30 23.63 4.30 248.02 0.13 HX-3 1.57 9.99 2.15 6.68 1.02 6.89 1.02 15.08 2.59 9.91 29.54 6.37 320.07 0.06 CM-2 1.80 12.00 2.54 7.26 1.10 7.22 1.02 15.71 2.57 39.58 30.02 6.76 360.10 0.09 CM-3 2.27 14.12 2.83 7.56 1.12 7.07 1.04 15.79 2.53 15.25 29.10 6.72 428.70 0.06 CM-3-2 2.23 13.75 2.78 7.40 1.10 7.07 1.01 15.68 2.54 14.04 27.80 6.51 416.21 0.07 表 2 曹门岩体LA-ICP-MS锆石U-Pb分析结果
Table 2. LA-ICP-MS zircon U-Pb dating data for the Caomen intrusion
样号 组成(10-6) Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/235U(Ma) 206Pb/238U(Ma) 208Pb/232Th(Ma) ρr 232Th 238U 比值 1σ 比值 1σ 比值 1σ 比值 1σ 年龄 1σ 年龄 1σ 年龄 1σ CM-1 211.92 304.71 0.70 0.046 59 0.002 47 0.099 99 0.005 23 0.015 57 0.000 23 0.004 97 0.000 12 97 5 100 1 100 2 0.9 CM-2 996.15 282.18 3.53 0.044 83 0.002 60 0.096 31 0.005 53 0.015 58 0.000 23 0.004 68 0.000 06 93 5 100 1 94 1 0.9 CM-3 237.48 354.45 0.67 0.048 52 0.002 40 0.108 30 0.005 29 0.016 19 0.000 23 0.004 92 0.000 11 104 5 104 1 99 2 0.9 CM-4 317.40 242.26 1.31 0.051 08 0.005 84 0.112 50 0.012 71 0.015 97 0.000 34 0.005 04 0.000 19 108 12 102 2 102 4 0.9 CM-5 180.61 177.07 1.02 0.048 08 0.003 40 0.104 99 0.007 34 0.015 84 0.000 26 0.004 90 0.000 12 101 7 101 2 99 2 0.9 CM-6 594.37 455.13 1.31 0.053 83 0.007 61 0.119 50 0.016 64 0.016 10 0.000 39 0.005 04 0.000 08 115 15 103 2 102 2 0.9 CM-7 386.77 241.21 1.60 0.047 11 0.003 64 0.103 64 0.007 91 0.015 95 0.000 28 0.004 88 0.000 09 100 7 102 2 98 2 0.9 CM-8 678.45 472.24 1.44 0.048 75 0.001 99 0.107 30 0.004 34 0.015 96 0.000 22 0.004 82 0.000 08 103 4 102 1 97 2 0.9 CM-9 138.60 143.46 0.97 0.051 60 0.004 85 0.109 95 0.010 22 0.015 45 0.000 29 0.005 04 0.000 15 106 9 99 2 102 3 0.9 CM-10 275.32 380.70 0.72 0.049 28 0.002 61 0.108 45 0.005 66 0.015 96 0.000 24 0.004 71 0.000 12 105 5 102 2 95 2 0.9 CM-11 247.55 423.15 0.59 0.046 72 0.002 13 0.103 81 0.004 70 0.016 11 0.000 22 0.004 85 0.000 11 100 4 103 1 98 2 0.9 CM-12 141.46 81.41 1.74 0.090 65 0.019 71 0.214 86 0.046 08 0.017 19 0.000 61 0.005 07 0.000 12 198 39 110 4 102 2 0.9 CM-13 237.15 216.71 1.09 0.046 50 0.003 30 0.099 59 0.007 00 0.015 53 0.000 24 0.005 16 0.000 11 96 6 99 2 104 2 0.9 CM-14 643.58 557.28 1.15 0.048 71 0.001 95 0.106 17 0.004 20 0.015 81 0.000 21 0.004 86 0.000 08 102 4 101 1 98 2 0.9 CM-15 328.06 245.57 1.34 0.051 84 0.004 31 0.113 03 0.009 22 0.015 81 0.000 32 0.005 23 0.000 14 109 8 101 2 105 3 0.9 CM-16 102.79 111.92 0.92 0.054 17 0.006 41 0.121 33 0.014 10 0.016 24 0.000 42 0.004 98 0.000 24 116 13 104 3 100 5 0.9 表 3 曹门岩体锆石稀土元素分析结果(10-6)
Table 3. Zircon trace elements for the Caomen intrusion
样号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Eu/Eu* Ce/Ce* CM-1 15.68 86.46 5.32 30.18 20.81 0.48 82.19 26.10 277.80 92.52 366.49 68.14 586.11 95.89 0.01 8.23 CM-2 1.01 222.53 0.99 12.79 18.23 4.11 86.56 24.67 261.16 87.40 346.23 66.40 603.76 104.85 0.08 222.42 CM-3 3.89 40.43 1.48 9.31 9.54 0.30 47.02 16.75 191.21 67.27 272.80 50.99 438.19 69.89 0.01 15.06 CM-4 0.15 76.76 0.23 3.22 7.06 0.70 37.32 14.15 174.39 68.35 319.25 68.89 666.04 120.04 0.03 402.62 CM-5 0.02 69.38 0.08 1.97 4.46 0.60 25.94 10.16 126.54 48.83 222.13 46.72 448.30 81.34 0.04 1 320.27 CM-6 26.46 191.86 7.84 36.92 18.46 1.14 70.75 26.44 321.03 120.34 522.27 105.05 948.73 157.23 0.03 11.19 CM-7 0.02 113.17 0.25 4.15 7.88 1.12 39.32 13.64 160.25 61.17 278.72 59.59 593.15 112.45 0.05 841.10 CM-8 15.37 133.50 4.77 17.44 10.71 0.71 50.67 18.36 219.79 81.58 361.78 74.79 701.91 125.96 0.02 13.26 CM-9 2.21 74.57 0.83 5.06 4.52 0.58 22.77 8.79 113.39 45.76 216.07 47.88 469.30 87.13 0.04 49.09 CM-10 23.30 85.57 7.40 36.53 15.02 0.35 51.86 17.38 191.19 65.85 266.83 49.06 422.06 67.62 0.01 5.57 CM-11 10.98 53.12 3.86 22.55 16.11 0.28 71.07 24.38 284.18 98.48 403.56 76.02 659.51 106.43 0.01 7.16 CM-12 46.00 90.27 13.72 53.02 23.24 3.58 53.39 14.72 147.92 49.94 207.30 41.51 400.54 77.11 0.09 3.02 CM-13 2.97 83.45 0.82 4.21 4.33 0.51 21.67 8.22 104.43 41.94 201.66 45.13 458.48 84.58 0.04 44.10 CM-14 14.26 99.65 4.61 28.19 24.15 0.59 102.28 31.54 328.57 106.55 413.99 74.50 627.71 102.86 0.01 10.56 CM-15 204.21 252.97 55.70 187.37 44.96 1.85 68.14 19.49 217.93 78.45 347.12 71.74 678.84 119.24 0.03 1.95 CM-16 < 0.014 6 59.68 0.10 1.71 4.34 0.71 23.23 8.55 102.91 39.71 184.47 40.99 412.86 77.61 0.05 表 4 怀溪铜金矿床含矿石英脉流体包裹体Rb-Sr同位素组成
Table 4. Rb-Sr isotopic compositions of fluid inclusions in metal-bearing quartz vein from the Huaixi Cu-Au deposit
样品号 测试矿物 采样地点 Rb(10-6) Sr(10-6) 87Rb/86Sr 87Sr/86Sr(2σ) HXI-8 石英 余坑矿段 1.287 3.993 0.929 1 0.710 71±0.000 04 HXI-10 石英 余坑矿段 1.409 4.376 0.928 8 0.710 71±0.000 07 HXI-11 石英 余坑矿段 1.359 5.881 0.666 4 0.710 34±0.000 02 HXI-12 石英 余坑矿段 1.118 5.195 0.620 6 0.710 25±0.000 03 HXI-13 石英 怀溪矿段 0.869 2.068 1.212 0 0.711 13±0.000 03 注:λ87Rb=1.42×10-11a-1. 表 5 怀溪铜金矿床硫化物硫同位素组成
Table 5. Sulfur isotopic compositions of sulfides from Huaixi Cu-Au deposit
样品 取样位置 测试矿物 δ34S(‰) HXⅠ-4 余坑段Ⅰ号脉 黄铁矿 3.85 HXⅠ-5 余坑段Ⅰ号脉 黄铁矿 2.18 HXⅠ-6 余坑段Ⅰ号脉 黄铁矿 -0.01 HXⅠ-7 余坑段Ⅰ号脉 黄铁矿 -2.14 HXⅠ-15 怀溪段Ⅰ号脉 黄铁矿 2.31 浙江省第十一地质大队,1989(内部资料) 黄铁矿(3件) 1.30~4.14 方铅矿 2.30 闪锌矿 2.20 -
[1] Andersen, T., 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chem. Geol., 192(1-2): 59-79. doi: 10.1016/S0009-2541(02)00195-X [2] Blevin, P.L., 2002. The petrographic and compositional character of variably K-enriched magmatic suites associated with Ordovician porphyry Cu-Au mineralisation in the Lachlan fold belt, Australia. Mineralium Deposita, 37(1): 87-99. doi: 10.1007/s00126-001-0232-9 [3] Chen, D.L., Sun, Y., Liu, L., et al., 2007. In situ LA-ICP-MS zircon U-Pb age of ultrahigh-pressure eclogites in the Yukahe area, northern Qaidam basin. Science in China (Series D), 50(Suppl. 2): 322-330. doi: 10.1007/s11430-007-6001-6 [4] Dong, C.W., Peng, Y.M., 1994. Qingtian composite body—the coexisting of two different types of granites. Journal of Zhejiang University (Natural Science), 28(4): 440-448 (in Chinese with English abstract). http://www.researchgate.net/publication/292585384_Qingtian_composite_body-the_coexisting_of_two_different_types_of_granites [5] Eby, G.N., 1992. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology, 20(7): 641-644. doi:10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2 [6] Flower, M.F.J., Tamaki, K., Hoang, N., 1998. Mantle extrusion: a model for dispersed volcanism and DUPAL-like asthenosphere in East Asia and the western Pacific. In: Flower, M.F.J., Chung, S.L., Lo, C.H., et al., eds., Mantle dynamics and plate interactions in East Asia. Geodynamics, 27: 67-88. [7] Geng, H.Y., Xu, X.S., O'Reilly, S.Y., et al., 2006. Cretaceous volcanic-intrusive magmatism in western Guangdong and its geological significance. Science in China (Series D), 49(7): 696-713. doi: 10.1007/s11430-006-0696-7 [8] Gilder, S.A., Gill, J., Coe, R.S., et al., 1996. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of South China. Journal of Geophysical Research, 101(B7): 16137-16154. doi: 10.1029/96JB00662 [9] Gilder, S.A., Leloup, P.H., Courtillot, V., et al., 1999. Tectonic evolution of the Tancheng-Lujiang (Tan-Lu) fault via Middle Triassic to Early Cenozoic paleomagnetic data. Journal of Geophysical Research, 104(B7): 15365-15390. doi: 10.1029/1999JB900123 [10] Griffin, W.L., Belousova, E.A., Shee, S., 2004. Crustal evolution in the northern Yilarn craton: U-Pb and Hf isotope evidence from detrital zircons. Precambrian Research, 131: 231-282. doi: 10.1016/j.precamres.2003.12.011 [11] Holliday, J.R., Wilson, A.J., Blevin, P.L., et al., 2002. Porphyry gold-copper mineralisation in the Cadia district, eastern Lachlan fold belt, New South Wales, and its relationship to shoshonitic magmatism. Mineralium Deposita, 37(1): 100-116. doi: 10.1007/s00126-001-0233-8 [12] Hong, D.W., Wang, S.G., Han, B.F., et al., 1996. Post-orogenic alkaline granites from China and comparisons with anorogenic alkaline granites elsewhere. Journal of Southeast Asian Earth Sciences, 13(1), 13-27. doi: 10.1016/0743-9547(96)00002-5 [13] Hoskin, P.W.O., Black, L.P., 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J. Metamorphic Geol., 18: 423-439. doi: 10.1046/j.1525-1314.2000.00266.x [14] Hoskin, P.W.O., Schaltegger, U., 2003. The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar, J.M., Hoskin, P.W.O., eds, . Reviews in mineralogy and geochemistry, 53: 27-62. Mineralogical Society of America and Geochemcal Society, Washington, DC. doi: 10.2113/0530027 [15] Hu, Y.H., Li, C.J., 1990. Genesis and minerogenetic model of the gold, silver, and silver (gold)-lead-zinc deposits in volcanic area, eastern Zhejiang Province. Geology of Zhejiang, 6(2): 15-25 (in Chinese with English abstract). http://www.researchgate.net/publication/309105573_Genesis_and_minerogenetic_model_of_the_gold_silver_and_silver_gold-lead-zinc_deposits_in_volcanic_area_eastern_Zhejiang_province [16] Hu, Y.H., Xu, Y.L., Zhu, X.S., 1994. Stable isotopic geochemical features of copper deposits in Zhejiang Province. Geology of Zhejiang, 10(2): 52-66 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZJDZ199402007.htm [17] Jaeger, J.J., Courtillot, V., Tapponnier, P., 1989. Paleontological view of the ages of the Deccan traps, the Cretaceous/Tertiary boundary, and the India-Asia collision. Geology, 17(4): 316-319. doi:10.1130/0091-7613(1989)017<0316:PVOTAO>2.3.CO;2 [18] Jensen, E.P., Barton, M.D., 2000. Gold deposits related to alkaline magmatism. In: Hagemann, S.G., Brown, P.E., eds., Gold in 2000. Rev. Econ. Geol., 13: 279-314. [19] Jiang, S.H., Nie, F.J., 2000. 40Ar-39Ar geochronology of the Shuiquangou alkaline complex and related gold deposits, northwestern Hebei, China. Geological Review, 46(6): 621-627 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200006012.htm [20] Kelley, K.D., Ludington, S., 2002. Cripple Creek and other alkaline-related gold deposits in the southern Rocky Mountains, USA: influence of regional tectonics. Mineralium Deposita, 37(1): 38-60. doi: 10.1007/s00126-001-0229-4 [21] Li, H.Q., Liu, J.Q., Wei, L., 1993. Study of fluid inclusion chronology of hydrothermal deposit and their geological application. Geological Publishing House, Beijing, 12-91 (in Chinese). [22] Li, X.H., Li, W.X., Li, Z.X., 2007. On the genetic classification and tectonic implications of the early Yanshanian granitoids in the Nanling Range, South China. Chinese Science Bulletin, 52(14): 1873-1885. doi: 10.1007/s11434-007-0259-0 [23] Li, Y.J., 2008. Metallogenic mechanism and ore forecasting of Huaixi copper-gold deposit, Pingyang County, Zhejiang Province (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [24] Mao, J.W., Xie, G.Q., Li, X.F., et al., 2004. Mesozoic iarge scale mineralization and multiple lithospheric extension in South China. Earth Science Frontiers, 11(1): 45-55 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZXW200603009&dbcode=CJFD&year=2006&dflag=pdfdown [25] Martin, H., Bonin, B., Capdevila, R., et al., 1994. The Kuiqi peralkaline granitic complex (SE China): petrology and geochemistry. J. Petrol., 35(4): 983-1015. doi: 10.1093/petrology/35.4.983 [26] Maruyama, S., Send, T., 1986. Orogeny and relative plate motions: example of Japanese islands. Tectonophysics, 127(3-4): 305-329. doi: 10.1016/0040-1951(86)90067-3 [27] Müllrer, D., Groves, D.I., Heithersay, P., 1994. The shoshonite porphyry Cu-Au association in the Goonumbla district, N.S.W. Australia. Mineralogy and Petrology, 51(2-4): 299-321. doi: 10.1007/BF01159734 [28] Müllrer, D., Kaminski, K., Uhlig, S., et al., 2002. The transition from porphyry- to epithermal-style gold mineralization at Ladolam, Lihir Island, Papua New Guinea: a reconnaissance study. Mineralium Deposita, 37(1): 61-74. doi: 10.1007/s00126-001-0230-y [29] Pearce, 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe, R.S., ed., Andesites. Wiley, New York, 525-548. [30] Qiu, J.S., Kanisawa, S., Wang, D.Z., 2000a. Geochemical characteristics and genetic type of Yaokeng alkali granites in Cangnan County, Zhejiang Province. Acta Petrologica et Mineralogica, 19(2): 97-105 (in Chinese with English abstract). http://www.researchgate.net/publication/313666160_Geochemical_characteristics_and_genetic_type_of_Yaokeng_alkali_granites_in_Cangnan_County_Zhejiang_Province [31] Qiu, J.S., Wang, D.Z., Kanisawa, S., et al., 2000b. Geochemistry and petrogenesis of aluminous A-type granites in the coastal area of Fujian Province. Geochimica, 29(4): 313-321 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DQHX200004000&dbcode=CJFD&year=2000&dflag=pdfdown [32] Qiu, J.S., Wang, D.Z., McInnes, B.I.A., 1999. Geochemistry and petrogenesis of the I and A type composite granite masses in the coastal area of Zhejiang and Fujian provinces. Acta Petrologica Sinica, 15(2): 237-246 (in Chinese with English abstract). http://www.oalib.com/paper/1471246 [33] Qiu, J.S., Wang, D.Z., Peng, Y.M., et al., 1996. Petrology, geochemistry and genesis of Taohuadao alkali granite in Zhoushan, Zhejiang Province. Journal of Nanjing University (Natural Sciences), 32(1): 80-89 (in Chinese with English abstract). [34] Ren, J.Y., Tamaki, K., Li, S., et al., 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in eastern China and adjacent areas. Tectonophysics, 344(3-4): 175-205. doi: 10.1016/S0040-1951(01)00271-2 [35] Shu, L.S., Zhou, X.M., 2002. Late Mesozoic tectonism of Southeast China. Geological Review, 48(3): 249-260 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200203004.htm [36] Sillitoe, R.H., 1997. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region. Australian Journal of Earth Sciences, 44(3): 373-388. doi: 10.1080/08120099708728318 [37] Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J., eds., Magmatism in the ocean basins. Geological Society, London, Special Publication, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 [38] Tan, J., Wei, J.H., Li, S.R., et al., 2008. Geochemical characteristics and tectonic significance of Kunlunguan A-type granite, Guangxi Province. Earth Science—Journal of China University of Geosciences, 33(6): 743-754 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.090 [39] Tao, K.Y., Gao, T.J., Lu, Z.G., et al., 1998. Volcanic basement structures, volcanic intrusion and the relationship with mineralization. Geological Publishing House, Beijing, 54-73 (in Chinese). [40] Tatsumi, Y., Maruyama, S., Nohda, S., 1990. Mechanism of backarc opening in the Japan Sea: role of asthenospheric injection. Tectonophysics, 181(1-4): 299-306. doi: 10.1016/0040-1951(90)90023-2 [41] Wan, T.F., 2004. Tectonics of China. Geological Publishing House, Beijing, 152-162 (in Chinese). [42] Wang, Q., Zhao, Z.H., Jian, P., et al., 2005. Geochronology of Cretaceous A-type granitoids or alkaline intrusive rocks in the hinterland, South China: constraints for Late-Mesozoic tectonic evolution. Acta Petrologica Sinica, 21(3): 795-808 (in Chinese with English abstract). http://www.researchgate.net/publication/279667273_Geochronology_of_Cretaceous_A-type_granitoids_or_alkaline_intrusive_rocks_in_the_hinterland_South_China_Constraints_for_late-Mesozoic_tectonic_evolution [43] Whalen, J.B., Currie, K.L., Chappell, B.W., 1987. A-type granites: geochemical characteristics, discriminatuon and petrogenesis. Contributions to Mineralogy and Petrology, 95: 407-419. doi: 10.1007/BF00402202 [44] Wu, G.G., Zhang, D., Chen, B.L., et al., 2000. Transformation of Mesozoic tectonic domain and its relation to mineralization in southeastern China: an evidence of southwestern Fujian Province. Earth Science—Journal of China University of Geosciences, 25(4): 390-396 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dqkx200004011 [45] Wu, Y.B., Zheng, Y.F., 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(15): 1554-1569. doi: 10.1360/04wd0130 [46] Xiao, E., Qiu, J.S., Xu, X.S., et al., 2007. Geochronology and geochemistry of the Yaokeng alkaline granitic pluton in Zhejiang Province: petrogenetic and tectonic implications. Acta Petrologica Sinica, 23(6): 1431-1440 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=200706136 [47] Xu, B.T., Li, C.J., Chen, H.S., 1994a. Mineralization chronology and isotopic geochemistry of the Haoshi silver deposit in Zhejiang Province. Mineral Deposits, 13(3): 271-281 (in Chinese with English abstract). http://www.researchgate.net/publication/291898347_Mineralization_chronology_and_isotopic_geochemistry_of_the_Haoshi_silver_deposit_in_Zhejiang_Province [48] Xu, B.T., Li, C.J., Chen, H.S., 1994b. Isotope geochemistry of the Xinchang-Yongjia silver (lead, zinc) ore zone in East Zhejiang Province. Acta Geologica Sinica, 68(3): 255-267 (in Chinese with English abstract). [49] Yuan, H.L., Gao, S., Liu, X.M., et al., 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma mass spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x [50] Zhao, Z.H., Xiong, X.L., Wang, Q., et al., 2002. Alkaline igenous rocks and related large-superlarge gold-copper deposits in China. Science in China (Series D), 32(Suppl. ): 1-10 (in Chinese). http://www.researchgate.net/publication/313562971_Large-superlarge_silver_deposits_related_to_volcanic_rocks_in_China [51] 董传万, 彭亚鸣, 1994. 青田复式岩体——两种不同类型花岗岩的复合. 浙江大学学报(自然科学版), 28(4): 440-448. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC404.010.htm [52] 胡永和, 李长江, 1990. 浙东沿海火山岩区金、银和含银(金)铅锌矿床的成因及成矿模式探讨. 浙江地质, 6(2): 15-25. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJDZ199002002.htm [53] 胡永和, 徐有浪, 朱兴盛, 1994. 浙江省铜矿床的稳定同位素地球化学特征. 浙江地质, 10(2): 52-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJDZ199402007.htm [54] 江思宏, 聂凤军, 2000. 冀西北水泉沟杂岩体及与其有关金矿床的40Ar-39Ar同位素年代学研究. 地质论评, 46(6): 621-627. doi: 10.3321/j.issn:0371-5736.2000.06.010 [55] 李华芹, 刘家齐, 魏林, 1993. 热液矿床流体包裹体年代学研究及其地质应用. 北京: 地质出版社, 12-91. [56] 李艳军, 2008. 浙江省平阳县怀溪铜金矿床成矿机制及成矿预测(硕士学位论文). 武汉: 中国地质大学. [57] 毛景文, 谢桂青, 李晓峰, 等, 2004. 华南地区中生代大规模成矿作用与岩石圈多阶段伸展. 地学前缘, 11(1): 45-55. doi: 10.3321/j.issn:1005-2321.2004.01.003 [58] 邱检生, 王德滋, McInnes, B.I.A., 1999. 浙闽沿海地区I型-A型复合花岗岩体的地球化学及成因. 岩石学报, 15(2): 237-246. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB902.009.htm [59] 邱检生, 王德滋, 彭亚鸣, 等, 1996. 浙江舟山桃花岛碱性花岗岩的岩石学和地球化学特征及成因探讨. 南京大学学报(自然科学版), 32(1): 80-89. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ601.014.htm [60] 邱检生, 蟹泽聪史, 王德滋, 2000a. 浙江苍南瑶坑碱性花岗岩的地球化学及其成因类型. 岩石矿物学杂志, 19(2): 97-105. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200002000.htm [61] 邱检生, 王德滋, 蟹泽聪史, 等, 2000b. 福建沿海铝质A型花岗岩的地球化学及岩石成因. 地球化学, 29(4): 313-321. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200004000.htm [62] 舒良树, 周新民, 2002. 中国东南部晚中生代构造作用. 地质论评, 48(3): 249-260. doi: 10.3321/j.issn:0371-5736.2002.03.004 [63] 谭俊, 魏俊浩, 李水如, 等, 2008. 广西昆仑关A型花岗岩地球化学特征及构造意义. 地球科学——中国地质大学学报, 33(6): 743-754. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200806001.htm [64] 陶奎元, 高天钧, 陆志刚, 等, 1998. 东南沿海火山岩基底构造及火山-侵入作用与成矿关系. 北京: 地质出版社, 54-73. [65] 万天丰, 2004. 中国大地构造学纲要. 北京: 地质出版社, 152-162. [66] 王强, 赵振华, 简平, 等, 2005. 华南腹地白垩纪A型花岗岩类或碱性侵入岩年代学及其对华南晚中生代构造演化的制约. 岩石学报, 21(3): 795-808. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503020.htm [67] 吴淦国, 张达, 陈柏林, 等, 2000. 中国东南大陆中生代构造域的转换及其与成矿的关系——以闽西南地区为例. 地球科学——中国地质大学学报, 25(4): 390-396. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200004011.htm [68] 肖娥, 邱检生, 徐夕生, 等, 2007. 浙江瑶坑碱性花岗岩体的年代学、地球化学及其成因与构造指示意义. 岩石学报, 23(6): 1431-1440. doi: 10.3969/j.issn.1000-0569.2007.06.019 [69] 徐步台, 李长江, 陈好寿, 1994a. 浙江毫石银矿床成矿年代学和同位素地球化学. 矿床地质, 13(3): 271-281. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ403.008.htm [70] 徐步台, 李长江, 陈好寿, 1994b. 浙东新昌-永嘉银(铅-锌)矿带同位素地球化学研究. 地质学报, 68(3): 255-267. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199403005.htm [71] 赵振华, 熊小林, 王强, 等, 2002. 我国富碱火成岩及有关的大型-超大型金铜矿床成矿作用. 中国科学(D辑), 32(增刊): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2002S1000.htm