Clay Mineral Characteristics of Ethmodiscus rex Diatom Mats from Low-Latitude Western Pacific during the Last Glacial and Implications for Their Formation
-
摘要: 为研究低纬度西太平洋(15°~21°N, 136°~140°E)发现的末次冰期晚期Ethmodiscus rex硅藻席形成机制, 运用X射线衍射、湿碱消解—ICP-OES和高温燃烧—EA方法分别测定了硅藻席岩心WPD-03中的粘土矿物、蛋白石和有机质.结果表明, WPD-03孔中粘土矿物主要为蒙脱石(50%)和伊利石(39%), 而绿泥石(8%)、高岭石(3%)含量极低.蒙脱石主要来源于海底基性火山物质的化学蚀变, 伊利石主要来源于研究区以西陆地(中国内陆干旱区和周边岛屿), 风力输送是主要搬运途径, 绿泥石也以陆源为主.伊利石/蒙脱石、蒙脱石丰度等指示硅藻席底部发生过显著的风尘输入增强过程, 风尘携带的丰富硅和铁可能促进了Ethmodiscus rex的勃发, 致使生物硅和有机碳大规模地输出到海底, 形成硅藻席.同时, Ethmodiscus rex特殊的生态学特征及对海洋环境的特殊需求可解释其勃发对风尘输入的滞后响应."风尘输入有利硅藻席沉积"对全面认识硅藻席形成机制及正确理解硅藻席在全球碳循环和气候中的作用具有重要意义.Abstract: WPD-03 is a sediment core with the Ethmodiscus rex diatom mats recently reported from the low-latitude western Pacific Ocean. Clay mineral assemblages, opal and organic material contents in sediments from Core WPD-03 were measured to trace the formation of diatom mats, based on a multi-approach including X-ray diffraction, inductively coupled plasma optical emission spectrometry (ICP-OES) with wet alkaline digestion and elemental analysis (EA) with high-temperature combustion. Clay minerals at Core WPD-03 are mainly composed of smectite (50%) and illite (39%), with extremely low contents of chlorite (8%) and kaolinite (3%). Provenance studies indicate that most smectite is derived form the chemical alteration of submarine basic volcanic materials, while illite is originated from the dry area of Chinese inland and nearby islands by the transport of wind mainly, the same as chlorite. The analysis of illite/smectite ratio and smectite abundance shows that, at the bottom of diatom mats, it recorded a remarkable strengthened eolian deposition, which imported plentiful silicon and iron to promote the bloom of Ethmodiscus rex probably, resulting in the export of mass biogenic silicon and organic carbon to seafloor and subsequently forming diatom mats. Special ecological characteristics of Ethmodiscus rex and their peculiar demands on marine environments may result in the lag response of Ethmodiscus rex bloom to dust inputs. Therefore, the dust input was considered to favor the formation of diatom mats. The mechanism of "dust input-diatom mats" is significant for comprehensive understanding of the mechanism of diatom mats formation and their role in global carbon cycle and climate changes.
-
Key words:
- Ethmodiscus rex diatom mats /
- clay minerals /
- formation /
- dust inputs /
- western Pacific /
- last glacial
-
图 1 研究区海底地形(a)和洋流分布与岩心站位(b)
a图据Nagel et al.(1981)改绘,黑色方框代表硅藻席发现海区;b图参考Qiu(2001),文中涉及的其他岩心也标于该图中
Fig. 1. Sketch map showing the seafloor topography (a), surface currents and cores locality (b) of the northwest Pacific
表 1 WPD-03岩心各层段粘土矿物含量与结晶学参数、有机质和蛋白石含量
Table 1. Contents and crystallinity parameters of mineral clays, and contents of organic matter and opal from each layer in Core WPD-03
层位 深度(cm) 粘土矿物 有机质 蛋白石(%) 伊利石(%) 蒙脱石(%) 绿泥石(%) 高岭石(%) 伊利石化学指数 伊利石结晶度(°) 蒙脱石结晶度(°) TOC(%) TOC/Al TN(%) TN/Al FWHM IB 硅藻席层 0~286 39* 51 8 3 0.22 0.35 0.54 1.51 0.23 0.118 0.03 0.016 55.2 19~53# 35~74 4~15 1~5 0.11~0.37 0.23~0.50 0.38~0.80 1.19~1.77 0.10~0.35 0.042~0.382 0.02~0.06 0.007~0.057 26.8~75.9 硅藻-粘土过渡层 286~334 47 41 9 3 0.20 0.32 0.50 1.55 0.23 0.036 0.06 0.009 21.2 26~61 26~65 6~12 1~7 0.11~0.33 0.24~0.43 0.39~0.67 1.38~2.21 0.15~0.32 0.018~0.052 0.04~0.08 0.005~0.013 4.0~40.9 粘土层 334~405 35 55 7 3 0.25 0.35 0.53 1.63 0.11 0.011 0.03 0.004 3.50 23~52 31~70 3~15 1~5 0.15~0.38 0.22~0.61 0.37~0.71 1.30~1.89 0.09~0.14 0.013~0.017 0.03~0.04 0.003~0.005 1.5~5.8 整个岩心 0~405 39 50 8 3 0.23 0.35 0.53 1.55 0.20 0.079 0.04 0.012 37.2 19~61 26~74 3~15 1~7 0.11~0.38 0.22~0.61 0.37~0.80 1.19~2.21 0.09~0.35 0.013~0.052 0.02~0.08 0.003~0.057 1.5~75.9 *指各层段平均值;#指各层段范围值. 表 2 研究区及周边地区粘土矿物含量及结晶学参数对比
Table 2. Comparison of contents and crystallinity parameters of clay minerals from area studied and its vicinity
研究区 样品描述 粘土矿物(%) IB结晶度(°) 数据来源 伊利石 蒙脱石 绿泥石 高岭石 伊利石 蒙脱石 中国内陆干旱区 黄土 78 1 15 6 0.46 0.49 万世明等,2008 冲绳海槽 表层沉积物(平均值) 61 6 25 7 - - 李国刚,1990 四国海盆 DSDP 443站位近表层样 57 11 25 7 - - Nagel et al., 1981 中国台湾 靠近浊水溪河口样品 69 0 30 1 0.25 - 万世明等,2008 菲律宾吕宋岛# 吕宋河样品 4 77 4 16 - - Liu et al., 2008 西菲律宾海 表层样,代表吕宋岛 21 46 24 9 0.33 1.33 万世明等,2008 WP1柱样(平均值),靠近吕宋岛 16 37 25 23 - - 石学法等,1995 WP40柱样(平均值),西临棉兰老岛 7 56 20 18 - - WP2柱样(平均值),西临棉兰老岛 7 54 20 19 - - 85KL表层样,海盆东侧 56 24 15 5 - - 张德玉,1993 帕里西维拉海盆 表层沉积物(平均值) 47 35 10 7 - - 靳宁等,2007 WPD-12柱样(平均值) 53 36 8 3 0.61 1.56 本文 WPD-03柱样(平均值) 39 50 8 3 0.53 1.55 马里亚纳海槽 62KG表层样,海槽北部 9 79 12 0 - - 张德玉,1994 77KG表层样,海槽南部 4 87 9 0 - - #便于对比,表中吕宋河样品数据依据Biscaye(1965)的粘土矿物相对含量计算方法做了重新计算. -
[1] Anderson, R.F., Kumar, N., Mortlock, R.A., et al., 1998. Late-Quaternary changes in productivity of the Southern Ocean. Journal of Marine Systems, 17(1-4): 497-514. doi: 10.1016/S0924-7963(98)00060-8 [2] Arnold, E., Merrill, J., Leinen, M., et al., 1998. The effect of source area and atmospheric transport on mineral aerosol collected over the North Pacific Ocean. Global and Planetary Change, 18(3-4): 137-159. doi: 10.1016/S0921-8181(98)00013-7 [3] Biscaye, P.E., 1965. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin, 76(7): 803-832. doi: 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2 [4] Bishop, J.K.B., Davis, R.E., Sherman, J.T., 2002. Robotic observations of dust storm enhancement of carbon biomass in the North Pacific. Science, 298(5594): 817-821. doi: 10.1126/science.1074961 [5] Broecker, W., Clark, E., Lynch-Stieglitz, J., et al., 2000. Late glacial diatom accumulation at 9° S in the Indian Ocean. Paleoceanography, 15(3): 348-352. doi: 10.1029/1999PA000439 [6] Calvo, E., Pelejero, C., Logan, G.A., et al., 2004. Dust-induced changes in phytoplankton composition in the Tasman Sea during the last four glacial cycles. Paleoceanography, 19(2): PA2020. doi: 10.1029/2003PA000992 [7] Chamley, H., 1989. Clay Sedimentology. Springer, Berlin. [8] Crosta, X., Shemesh, A., Etourneau, J., et al., 2005. Nutrient cycling in the Indian sector of the Southern Ocean over the last 50, 000 years. Global Biogeochemical Cycles, 19(3): GB3007. doi: 10.1029/2004GB002344 [9] Crosta, X., Shemesh, A., Salvignac, M.E., et al., 2002. Late Quaternary variations of elemental ratios (C/Si and N/Si) in diatom-bound organic matter from the Southern Ocean. Deep-Sea Research Part Ⅱ: Topical Studies in Oceanography, 49(9-10): 1939-1952. doi: 10.1016/S0967-0645(02)00019-X [10] De Baar, H.J.W., Boyd, P.W., Coale, K.H., et al., 2005. Synthesis of iron fertilization experiments: from the iron age in the age of enlightenment. Journal of Geophysical Research, 110(C9): C09S16. doi: 10.1029/2004JC002601 [11] De Deckker, P., Gingele, F.X., 2002. On the occurrence of the giant diatom Ethmodiscus rex in an 80 ka record from a deep-sea core, southeast of Sumatra, Indonesia: implications for tropical palaeoceanography. Marine Geology, 183(1-4): 31-43. doi: 10.1016/S0025-3227(01)00252-3 [12] Duce, R.A., Liss, P.S., Merrill, J.T., et al., 1991. The atmospheric input of trace species to the world ocean. Global Biogeochemical Cycles, 5(3): 193-259. doi: 10.1029/91GB01778 [13] Ehrmann, W., 1998. Implications of Late Eocene to Early Miocene clay mineral assemblages in McMurdo Sound (Ross Sea, Antarctica) on paleoclimate and ice dynamics. Palaeogeography, Palaeoclimatology, Palaeoecology, 139(3-4): 213-231. doi: 10.1016/S0031-0182(97)00138-7 [14] Erickson Ⅲ, D.J., Hernandez, J.L., Ginoux, P., et al., 2003. Atmospheric iron delivery and surface ocean biological activity in the Southern Ocean and Patagonian region. Geophysical Research Letters, 30(12): 1609. doi: 10.1029/2003GL017241 [15] Esquevin, J., 1969. Influence de la composition chimique des illites surcristallinite. Bulletin du Centre de Recherches Pau-SNPA, 3(1): 147-153. http://www.researchgate.net/publication/285666278_Influence_de_la_composition_chimique_des_illites_sur_leur_cristallinit [16] Gingele, F.X., 1996. Holocene climatic optimum in Southwest Africa—Evidence from the marine clay mineral record. Palaeogeography, Palaeoclimatology, Palaeoecology, 122(1-4): 77-87. doi: 10.1016/0031-0182(96)00076-4 [17] Gingele, F.X., De Deckker, P., Girault, A., et al., 2002. History of the South Java current over the past 80 ka. Palaeogeography, Palaeoclimatology, Palaeoecology, 183(3-4): 247-260. doi: 10.1016/S0031-0182(01)00489-8 [18] Gingele, F.X., De Deckker, P., Hillenbrand, C.D., 2001. Clay mineral distribution in surface sediments between Indonesia and NW Australia—source and transport by ocean currents. Marine Geology, 179(3-4): 135-146. doi: 10.1016/S0025-3227(01)00194-3. [19] Gingele, F.X., Schneider, F., 2001. Anomalous South Atlantic lithologies confirm global scale of unusual mid-Pleistocene climate excursion. Earth and Planetary Science Letters, 186(1): 93-101. doi: 10.1016/S0012-821X(01)00234-5 [20] Grigorov, I., Pearce, R.B., Kemp, A.E.S., 2002. Southern Ocean laminated diatom ooze: mat deposits and potential for palaeo-flux studies, ODP leg 177, Site 1093. Deep-Sea Research Part Ⅱ: Topical Studies in Oceanography, 49(16): 3391-3407. doi: 10.1016/S0967-0645(02)00089-9 [21] Harrison, K.G., 2000. Role of increased marine silica input on paleo-pCO2 levels. Paleoceanography, 15(3): 292-298. doi: 10.1029/1999PA000427 [22] Ji, J.F., Chen, J., Lu, H.Y., 1999. Origin of illite in the loess from the Luochuan area, Loess Plateau, Central China. Clay minerals, 34(4): 525-532. doi: 10.1180/000985599546398 [23] Jickells, T.D., An, Z.S., Andersen, K.K., et al., 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science, 308(5718): 67-71. doi: 10.1126/science.1105959 [24] Jin, N., Li, A.C., Liu, H.Z., et al., 2007. Clay minerals in surface sediment of the northwest Parece Vela basin: distribution and provenance. Oceanologia et Limnologia Sinica, 38(6): 504-511(in Chinese with English abstract). [25] Kemp, A.E.S., Baldauf, J.G., 1993. Vast Neogene laminated diatom mat deposits from the eastern equatorial Pacific Ocean. Nature, 362: 141-144. doi: 10.1038/362141a0 [26] Kemp, A.E.S., Pearce, R.B., Grigorov, I., et al., 2006. The production of giant marine diatoms and their export at oceanic frontal zones: implications for Si and C flux from stratified oceans. Global Biogeochemical Cycles, 20(4): GB4S04. doi: 10.1029/2006GB002698 [27] Kemp, A.E.S., Pike, J., Pearce, R.B., et al., 2000. The "fall dump"—a new perspective on the role of a "shade flora" in the annual cycle of diatom production and export flux. Deep-Sea Research Part Ⅱ: Topical Studies in Oceanography, 47(9-11): 2129-2154. doi: 10.1016/S0967-0645(00)00019-9 [28] Kolla, V., Nadler, L., Bonatti, E., 1980. Clay mineral distributions in surface sediments of the Philippine Sea. Oceanologica Acta, 3(2): 245-250. [29] Lamb, A.L., Wilson, G.P., Leng, M.J., 2006. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth Science Reviews, 75(1-4): 29-57. doi: 10.1016/j.earscirev.2005.10.003 [30] Li, G.G., 1990. Composition, distribution and geological significance of clay minerals from surface sediments of Chinese marginal sea. Acta Oceanologica Sinica, 12(4): 470-479 (in Chinese). http://www.researchgate.net/publication/284602807_Composition_distribution_and_geological_significance_of_offshore_surface_sediments_J [31] Liu, Z.F., Tuo, S.T., Colin, C., et al., 2008. Detrital fine-grained sediment contribution from Taiwan to the northern South China Sea and its relation to regional ocean circulation. Marine Geology, 255(3-4): 149-155. doi: 10.1016/j.margeo.2008.08.003 [32] Martin, J.H., 1990. Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography, 5(1): 1-13. doi: 10.1029/PA005i001p00001 [33] Martini, E., 1981. Pliocene and Quaternary diatoms, silicoflagellates, sponge spicules, and endoskeletal dinoflagellates from the Philippine Sea, Deep Sea Drilling Project Legs 59 and 60. In: Hussong, D.M., Uyeda, S., Blanchet. R., et al., eds., Initial Reports of the Deep Sea Drilling Project. U.S. Government Printing Office, Washington, 60: 565-574. doi: 10.2973/dsdp.proc.60.129.1982 [34] Moore, D.M., Reynolds, R.C., 1997. X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, New York. [35] Mortlock, R.A., Froelich, P.N., 1989. A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep Sea Research Part A: Oceanographic Research Papers, 36(9): 1415-1426. doi: 10.1016/0198-0149(89)90092-7 [36] Murray, R.W., Knowlton, C., Leinen, M., et al., 2000. Export production and carbonate dissolution in the central equatorial Pacific Ocean over the past 1 Myr. Paleoceanography, 15(6): 570-592. doi: 10.1029/1999PA000457 [37] Nagel, U., Müller, G., Schumann, D., et al., 1981. Mineralogy of sediments cored during Deep Sea Drilling Project Legs 58-60 in the North and South Philippine Sea: results of X-ray diffraction analyses. In: Hussong, D.M., Uyeda, S., Blanchet, R., et al., eds., Initial Reports of the Deep Sea Drilling Project. U.S. Government Printing Office, Washington, 60: 415-435. doi: 10.2973/dsdp.proc.60.118.1982 [38] Parsons, T.R., Stephens, K., Strickland, J.D.H., 1961. On the chemical composition of eleven species of marine phytoplankters. Journal of the Fisheries Research Board of Canada, 18: 1001-1016. doi: 10.1139/f61-063 [39] Peng, S.Z., Guo, Z.T., 2007. Clay mineral composition of the Tertiary red clay and the Quaternary loess-paleosols as well as its environmental implication. Quaternary Sciences, 27(2): 277-285 (in Chinese with English abstract). http://www.cqvip.com/main/detail.aspx?id=24106013 [40] Petschick, R., Kuhn, G., Gingele, F., 1996. Clay mineral distribution in surface sediments of the South Atlantic: sources, transport, and relation to oceanography. Marine Geology, 130(3-4): 203-229. doi: 10.1016/0025-3227(95)00148-4 [41] Pettke, T., Halliday, A.N., Hall, C.M., et al., 2000. Dust production and deposition in Asia and the North Pacific Ocean over the past 12 Myr. Earth and Planetary Science Letters, 178(3-4): 397-413. doi: 10.1016/S0012-821X(00)00083-2 [42] Qiu, B., 2001. Kuroshio and Oyashio currents. In: Steele, J.H., ed., Encyclopedia of ocean sciences. Academic Press, New York, 1413-1425. doi: 10.1006/l-wos.2001.0350 [43] Ragueneau, O., Treguer, P., Leynaert, A., et al., 2000. A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global and Planetary Change, 26(4): 317-365. doi: 10.1016/S0921-8181(00)00052-7 [44] Robinson, S.G., 1986. The Late Pleistocene palaeoclimatic record of North Atlantic deep-sea sediments revealed by mineral-magnetic measurements. Physics of the Earth and Planetary Interiors, 42(1-2): 22-47. doi: 10.1016/S0031-9201(86)80006-1 [45] Romero, O., Schmieder, F., 2006. Occurrence of thick Ethmodiscus oozes associated with a terminal Mid-Pleistocene transition event in the oligotrophic subtropical South Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology, 235(4): 321-329. doi: 10.1016/j.palaeo.2005.10.026 [46] Scott, R.B., Kroenke, L., Zakariadze, G., et al., 1980. Evolution of the South Philippine Sea: Deep Sea Drilling Project Leg 59 results. In: Kroenke, L., Scott, R.B., Balshaw, K., et al., eds., Initial Reports of the Deep Sea Drilling Project. U.S. Government Printing Office, Washington, 59: 803-815. doi: 10.2973/dsdp.proc.59.138.1981 [47] Shi, X.F., Chen, L.R., Li, K.Y., et al., 1995. Study on minerageny of the clay sediment in the west of Philippine Sea. Marine Geology & Quaternary Geology, 15(2): 61-72 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ502.007.htm [48] Toggweiler, J.R., 1999. Oceanography—an ultimate limiting nutrient. Nature, 400: 511-512. doi: 10.1038/22892 [49] Tréguer, P., Nelson, D.M., van Bennekom, A.J., et al., 1995. The silica balance in the world ocean: a reestimate. Science, 268(5209): 375-379. doi: 10.1126/seience.268.5209.375 [50] Wan, S.M., Li, A.C., Xu, K.H., et al., 2008. Characteristics of clay minerals in the northern South China Sea and its implications for evolution of East Asian Monsoon since Miocene. Earth Science—Journal of China University of Geosciences, 33(3): 289-300 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.039 [51] Xu, Z.K., Li, A.C., Jiang, F.Q., et al., 2007. Grain-size and clay mineral characteristics of sediments under deep water ferromanganese crusts in the eastern Philippine Sea. Acta Oceanologica Sinica, 29(2): 150-155 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-SEAC200702018.htm [52] Xu, Z.K., Li, A.C., Jiang, F.Q., et al., 2008. Geochemical character and material source of sediments in the eastern Philippine Sea. Chinese Science Bulletin, 53(6): 923-931. doi: 10.1007/s11434-008-0118-7 [53] Young, R.W., Carder, K.L., Betzer, P.R., et al., 1991. Atmospheric iron inputs and primary productivity: phytoplankton responses in the North Pacific. Global Biogeochemical Cycles, 5(2): 119-134. doi: 10.1029/91GB00927 [54] Yuan, W., Zhang, J., 2006. High correlations between Asian dust events and biological productivity in the western North Pacific. Geophysical Research Letters, 33(7): L07603. doi: 10.1029/2005GL025174 [55] Zhai, B., Li, T.G., Chang, F.M., et al., 2009. Vast laminated diatom mat deposits from the west low-latitude Pacific Ocean in the last glacial period. Chinese Science Bulletin, 54(23): 4529-4533. doi: 10.1007/s11434-009-0447-1 [56] Zhang, D.Y., 1993. Clay mineralogy of the sediments deposited since the Pleistocene in the Mariana Trough and the West Philippine basin. Acta Sedimentologica Sinica, 11(1): 111-120 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB199301012.htm [57] Zhang, D.Y., 1994. Clay mineral composition and distribution in the Mariana Trough. Journal of Oceanography of Huanghai & Bohai Seas, 12(2): 32-39 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=HBHH402.004&dbcode=CJFD&year=1994&dflag=pdfdown [58] Zheng, Y., Anderson, R.F., Froehlich, P.N., et al., 2002. Challenges in radiocarbon dating organic carbon in opal-rich marine sediments. Radiocarbon, 44(1): 123-136. doi: 10.1017/S0033822200064729 [59] 靳宁, 李安春, 刘海志, 等, 2007. 帕里西维拉海盆西北部表层沉积物中粘土矿物的分布特征及物源分析. 海洋与湖沼, 38(6): 504-511. doi: 10.3321/j.issn:0029-814x.2007.06.004 [60] 李国刚, 1990. 中国近海表层沉积物中粘土矿物的组成、分布及其地质意义. 海洋学报, 12(4): 470-479. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC199004009.htm [61] 彭淑贞, 郭正堂, 2007. 风成三趾马红土与第四纪黄土的粘土矿物组成异同及其环境意义. 第四纪研究, 27(2): 277-285. doi: 10.3321/j.issn:1001-7410.2007.02.013 [62] 石学法, 陈丽蓉, 李坤业, 等, 1995. 西菲律宾海西部海域粘土沉积物的成因矿物学研究. 海洋地质与第四纪地质, 15(2): 61-72. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ502.007.htm [63] 万世明, 李安春, 胥可辉, 等, 2008. 南海北部中新世以来粘土矿物特征及东亚古季风记录. 地球科学——中国地质大学学报, 33(3): 289-300 https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200803002.htm [64] 徐兆凯, 李安春, 蒋富清, 等, 2007. 东菲律宾海深水铁锰结壳发育站位沉积物的粒度及黏土矿物学特征. 海洋学报, 29(2): 150-155. doi: 10.3321/j.issn:0253-4193.2007.02.019 [65] 张德玉, 1993. 马里亚纳海槽和西菲律宾海盆更新世以来沉积物中的粘土矿物. 沉积学报, 11(1): 111-120. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199301012.htm [66] 张德玉, 1994. 马里亚纳海槽区粘土矿物组成及分布特征. 黄渤海海洋, 12(2): 32-39. https://www.cnki.com.cn/Article/CJFDTOTAL-HBHH402.004.htm