• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    淤长型潮滩剖面形态演变模拟: 以江苏中部海岸为例

    刘秀娟 高抒 汪亚平

    刘秀娟, 高抒, 汪亚平, 2010. 淤长型潮滩剖面形态演变模拟: 以江苏中部海岸为例. 地球科学, 35(4): 542-550. doi: 10.3799/dqkx.2010.070
    引用本文: 刘秀娟, 高抒, 汪亚平, 2010. 淤长型潮滩剖面形态演变模拟: 以江苏中部海岸为例. 地球科学, 35(4): 542-550. doi: 10.3799/dqkx.2010.070
    LIU Xiu-juan, GAO Shu, WANG Ya-ping, 2010. Modeling the Shore-Normal Profile Shape Evolution for an Accretional Tidal Flat on the Central Jiangsu Coast. Earth Science, 35(4): 542-550. doi: 10.3799/dqkx.2010.070
    Citation: LIU Xiu-juan, GAO Shu, WANG Ya-ping, 2010. Modeling the Shore-Normal Profile Shape Evolution for an Accretional Tidal Flat on the Central Jiangsu Coast. Earth Science, 35(4): 542-550. doi: 10.3799/dqkx.2010.070

    淤长型潮滩剖面形态演变模拟: 以江苏中部海岸为例

    doi: 10.3799/dqkx.2010.070
    基金项目: 

    国家自然科学基金项目 40876045

    国家自然科学基金项目 40576040

    国家"973"计划前期研究专项 2006CB708410

    国土资源部海洋油气资源与环境地质重点实验室开放基金项目 MRE200906

    详细信息
      作者简介:

      刘秀娟(1972-), 女, 副教授, 主要从事海岸沉积动力学研究.E-mail: xjliu@cug.edu.cn

    • 中图分类号: P512.32

    Modeling the Shore-Normal Profile Shape Evolution for an Accretional Tidal Flat on the Central Jiangsu Coast

    • 摘要: 在泥质、砂质物质共存的淤长型潮滩, 其剖面的塑造受到潮流作用下堆积过程的控制.为探讨这种潮滩剖面的演变过程, 以江苏中部海岸为研究对象建立了大小潮周期性作用下的潮滩剖面演变模型, 模拟了潮滩均衡态剖面形态与初始坡度、潮差、沉积物供应量之间的关系及潮滩的持续淤长剖面.模拟结果表明: (1)淤长型潮滩剖面达到均衡态时的形态是上凸的, 且与初始形态无关; (2)在外源一定的条件下, 潮滩的宽度与潮差呈正相关; (3)外源物质供应越丰富, 潮滩宽度越大; (4)潮滩的冲淤状态由沉积物的供应量决定; (5)对大潮高潮位附近的无沉积带进行充填可实现对其长期持续淤长剖面的模拟; (6)有丰富沉积物来源的潮滩, 在调整至均衡态后仍持续向海淤长, 并在淤长过程中保持均衡态; (7)当在模型中输入有关江苏海岸的参数时, 模拟的潮滩宽度和坡度与江苏海岸的潮滩一致.

       

    • 图  1  研究区示意(王颖和朱大奎,1994)

      Fig.  1.  Sketch map of study area

      图  2  对潮间带大潮高潮位附近的无沉积带进行充填的算法示意

      Fig.  2.  Diagram showing the algorithm to fill in the non sedimentation zone near high water level on springs on the tidal flat

      图  3  水域左边界的控制与否对潮滩地形演变的影响

      a.水域左边界不控制;b.水域左边界加以控制;潮滩的初始坡度为0.7‰,平均潮差为3.62 m,涨潮阶段开边界悬沙浓度为0.5 g/L

      Fig.  3.  Influence of the treatment of the left side boundary (i.e., the non sedimentation zone) on the model output of the profile evolution

      图  4  不同初始坡度潮滩剖面的演变及其均衡态

      a.潮滩初始坡度为0.5‰;b.潮滩初始坡度为0.9‰;涨潮阶段开边界悬沙浓度为0.5 g/L,平均潮差为3.62 m

      Fig.  4.  Evolution process and the equilibrium of the intertidal flat with different initial gradients

      图  5  潮差对潮滩宽度的影响

      a.平均潮差为2.66 m;b.平均潮差为4.66 m;潮滩初始坡度为0.7‰,涨潮阶段开边界悬沙浓度为0.5 g/L

      Fig.  5.  Effect of tidal range on the width of the intertidal flat

      图  6  沉积物供应中止时潮滩剖面的演变

      初始潮滩坡度为0.5‰,平均潮差为3.62 m

      Fig.  6.  Evolution of the intertidal flat when sediment supply was cutoff

      图  7  外源量的变化对潮滩剖面的演变及其均衡态的影响

      a.涨潮阶段开边界悬沙浓度为0.5 g/L;b.涨潮阶段开边界悬沙浓度为1.0 g/L;潮滩初始坡度为0.7‰,平均潮差为3.62 m

      Fig.  7.  Effect of variations in sediment supply on the evolution of the intertidal flat profile and the equilibrium status

      图  8  潮滩长期持续淤长剖面

      潮滩剖面初始坡度为0.7‰,平均潮差为3.62 m,潮滩阶段开边界悬沙浓度为0.5 g/L

      Fig.  8.  Long-term intertidal flat profile evolution

      表  1  动力学模型中的有关参数取值

      Table  1.   The parameters in the model

      参数类型 参数名称 数值
      潮汐参数 与M2相联系的涨潮历时Tmf(s) 19 656
      与M2相联系的落潮历时Tme(s) 25 056
      与M2相联系的潮位循环时间Tm(s) 44 712
      与M2相联系的最大潮差Rm(m) 3.495 8
      与S2相联系的涨潮历时Tsf(s) 18 900
      与S2相联系的落潮历时Tse(s) 24 300
      与S2相联系的潮位循环时间Ts(s) 43 200
      与S2相联系的最大潮差Rs(m) 1.160 8
      大小潮循环时间T(s) 1 277 486
      潮滩沉积物粒度参数 沉积物密度ρs(kg/m3) 2 650
      砂的粒径Ds(mm) 0.07
      泥的粒径Dm(mm) 0.01
      砂的临界起动流速Ucs(m/s) 0.30
      泥的临界再悬浮流速Ucm(m/s) 0.25
      泥的临界沉降切应力τm(N/m2) 0.19
      泥的临界侵蚀切应力τe(N/m2) 0.19
      悬沙沉降速率ωs(mm/s) 0.5
      海水物理性质 海水密度ρ(kg/m3) 1 025
      动力黏度系数μ(kg/m/s) 1.4×10-3
      运动黏度系数υ(m2/s) 1.4×10-6
      距离底床100 cm处的拖曳系数C100 3.0×10-3
      卡门常数κ 0.4
      底床物理性质 粗糙长度Z(m) 1.98×10-2
      再悬浮常数E(kg/m2/s) 1.0×10-5
      底床沉积物的空隙率ε 0.4
      其他参数 空间步长(m) 200
      时间步长(s) 120
      地形更新时间(s) 1 277 486
      下载: 导出CSV
    • [1] Amos, C.L., 1995. Siliciclastic tidal flats. In: Perillo, G.M.E., ed. . Geomorphology and sedimentology of estuaries. Elsevier Science BV, 273-306.
      [2] Chen, C.J., 1991. Development of depositional tidal flat in Jiangsu Province. Oceanologia et Limnologia Sinica, 22(4): 360-368 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYFZ199104010.htm
      [3] Chen, J.X., Li, T.G., Nan, Q.Y., 2009. Variations of Terrigenous material discharges in the South Okinawa trough and its relation to the East Asian summer monsoon since the last millennium. Earth Science—Journal of China University of Geosciences, 34(5): 811-818 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.091
      [4] Draut, A.E., Kineke, G.C., Huh, O.K., et al., 2005. Coastal mudflat accretion under energetic conditions, Louisiana chenier-plain coast, USA. Marine Geology, 214(1-3): 27-47. doi: 10.1016/j.margeo.2004.10.033
      [5] Gao, S., 2009. Modeling the preservation potential of tidal flat sedimentary records, Jiangsu coast, eastern China. Continental Shelf Research, 29(16): 1927-1936. doi: 10.1016/j.csr.2008.12.010
      [6] Gao, S., Zhu, D.K., 1988. The profile of Jiangsu's mud coast. Journal of Nanjing University (Natural Sciences), 24(1): 75-84 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NJDZ198801006.htm
      [7] Gu, Y.S., Qiu, H.O., Xie, S.C., et al., 2008. Lake sediment records for eutrophication history in response to human activity during recent century in the Liangzi lake, Hubei Province. Earth Science—Journal of China University of Geosciences, 33(5): 679-686 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.083
      [8] Kamp, P.J.J., Naish, T., 1998. Forward modelling of the sequence stratigraphic architecture of shelf cyclothems: application to Late Pliocene sequences, Wanganui basin (New Zealand). Sedimentary Geology, 116(1-2): 57-80. doi: 10.1016/S0037-0738(97)00080-8
      [9] Kineke, G.C., Sternberg, R.W., 1989. The effect of particle settling velocity on computed suspended sediment concentration profiles. Marine Geology, 90(3): 159-174. doi: 10.1016/0025-3227(89)90039-X
      [10] Kirby, R., 2000. Practical implications of tidal flat shape. Continental Shelf Research, 20(10-11): 1061-1077. doi: 10.1016/S0278-4343(00)00012-1
      [11] Kirby, J.R., Kirby, R., 2008. Medium timescale stability of tidal mudflats in Bridgwater Bay, Bristol Channel, UK: influence of tides, waves and climate. Continental Shelf Research, 28(19): 2615-2629. doi: 10.1016/j.csr.2008.08.006
      [12] Krone, R.B., 1962. Flume studies of the transport of sediment in estuarial shoaling processes. Hydraulics Engineering Laboratory and Sanitary Engineering Research Laboratory, University of Berkeley, California.
      [13] Lee, S.C., Mehta, A.J., 1997. Problems in characterizing dynamics of mud shore profiles. Journal of Hydraulic Engineering, 123(4): 351-361. doi: 10.1061/10.1061/(ASCE)0733-9429(1997)123:4(351)
      [14] Li, Z.H., Gao, S., Shen, H.T., et al., 2006. Characteristics of grain-size distributions of suspended sediment and its response to dynamics over the Dafeng tidalflat, Jiangsu coast in China. Acta Oceanologica Sinica, 28(4): 87-95 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=SEAC200604010&dbcode=CJFD&year=2006&dflag=pdfdown
      [15] Miller, M.C., McCave, I.N., Komar, P.D., 2006. Threshold of sediment motion under unidirectional currents. Sedimentology, 24(4): 507-527. doi: 10.1111/j.1365-3091.1977.tb00136.x
      [16] Nielsen, P., 1992. Coastal bottom boundary layers and sediment transport. Advanced Series on Ocean Engineering, World Scientific Publishing, 4.
      [17] Paarlberg, A.J., Knaapen, M.A.F., de Vries, M.B., et al., 2005. Biological influences on morphology and bed composition of an intertidal flat. Estuarine, Coastal and Shelf Sciences, 64(4): 577-590. doi: 10.1016/j.ecss.2005.04.008
      [18] Partheniades, E., 1965. Erosion and deposition of cohesive soils. Journal of the Hydraulics Division, ASCE, 91: 105-139. doi: 10.1061/JYCEAJ.0001165
      [19] Pritchard, D., Hogg, A.J., Roberts, W., 2002. Morphological modelling of intertidal mudflats: the role of cross-shore tidal currents. Continental Shelf Research, 22(11-13): 1887-1895. doi: 10.1016/S0278-4343(02)00044-4
      [20] Pritchard, D., Hogg, A.J., 2003. Cross-shore sediment transport and the equilibrium morphology of mudflats under tidal currents. Journal of Geophysical Research, 108(C10): 3313-3327. doi: 10.1029/2002JC001570
      [21] Ren, M.E., ed., 1986. Comprehensive investigation of coastal zone and tidal flat resources, Jiangsu Province. China Ocean Press, Beijing (in Chinese).
      [22] Roberts, W., Le Hir, P., Whitehouse, R.J.S., 2000. Investigation using simple mathematical models of the effect of tidal currents and waves on the profile shape of intertidal mudflats. Continental Shelf Research, 20(10-11): 1079-1097. doi: 10.1016/S0278-4343(00)00013-3
      [23] Soulsby, R.L., Whitehouse, R.J.S., 1997. Threshold of sediment motion in coastal environments. Pacific Coasts and Ports'97, Proceedings Volume 1: 149-154.
      [24] van Ledden, M., 2002. A process-based sand-mud model. In: Winterwerp, J.C., Kranenburg, C., eds., Proceedings of Marine Science. Amsterdam, Elsevier, 5: 577-594
      [25] van Straaten, L.M.J.U., 1961. Sedimentation in tidal flat areas. Journal of the Alberta Society of Petroleum Geologists, 9: 203-226.
      [26] Wang, Y., Zhu, D.K., 1994. Coastal geomorphology. High Education Press, Beijing, 180-181 (in Chinese).
      [27] Yang, B.C., Dalrymple, R.W., Chun, S.S., 2005. Sedimentation on a wave-dominated, open-coast tidal flat, south-western Korea: summer tidal flat-winter shoreface. Sedimentology, 52(2): 235-252. doi: 10.1111/j.1365-3091.2004.00692.x
      [28] Zhang, R.S., 1984. Land-forming history of the Huanghe River delta and coastal plain of North Jiangsu. Acta Geographica Sinica, 39(2): 173-184 (in Chinese with English abstract). http://www.researchgate.net/publication/322774918_Land-forming_history_of_the_Huanghe_River_delta_and_coastal_plain_of_north_Jiangsu
      [29] Zhang, R.S., 1986. Characteristics of tidal current and sedimentation of suspended load on tidal mud flat in Jiangsu Province. Oceanologia et Limnologia Sinica, 17(3): 235-245 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYFZ198603007.htm
      [30] Zhang, Y., Swift, D.J.P., Yu, Z.Y., et al., 1998. Modeling of coastal profile evolution on the abandoned delta of the Huanghe River. Marine Geology, 145(1-2): 133-148. doi: 10.1016/S0025-3227(97)00110-2
      [31] Zhang, Y., Yu, Z.Y., Jin, L., 1993. The erossion process model of mud flat by wave. The Ocean Engineering, 11(4): 74-83 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYGC199304010.htm
      [32] Zhang, Y.F., Li, C.A., Chen, L., et al., 2009. Magnetic fabric of Holocene palaeo-floods events in Jianghan plain. Earth Science—Journal of China University of Geosciences, 34(6): 985-992 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.112
      [33] Zhu, D.K., Gao, S., 1985. A mathematical model for the geomorphic evolution and sedimentation of tidal flats. Marine Science Bulletin, 4(5): 15-21 (in Chinese with English abstract). http://www.researchgate.net/publication/282586586_Zhu_D-K_and_Gao_S_1985_A_mathematical_model_for_the_geomorphic_evolution_and_sedimentation_of_tidal_flats_in_Chinese_with_English_abstract_Marine_Science_Bulletin_v4_no5_p15_21
      [34] Zhu, D.K., Xu, T.G., 1982. The cast development and exploit of middle Jiangsu. Journal of Nanjing University (Natural Sciences), 3: 799-818 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NJDZ198203023.htm
      [35] 陈才俊, 1991. 江苏淤长型淤泥质潮滩的剖面发育. 海洋与湖沼, 22(4): 360-368. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ199104010.htm
      [36] 陈金霞, 李铁刚, 南青云, 2009. 冲绳海槽千年来陆源物质输入历史与东亚季风变迁. 地球科学——中国地质大学学报, 34(5): 811-818. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200905015.htm
      [37] 高抒, 朱大奎, 1988. 江苏淤泥质海岸剖面的初步研究. 南京大学学报(自然科学版), 24(1): 75-84. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ198801006.htm
      [38] 顾延生, 邱海鸥, 谢树成, 等, 2008. 湖北梁子湖近代沉积记录对人类活动的响应. 地球科学——中国地质大学学报, 33(5): 679-686. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200805014.htm
      [39] 李占海, 高抒, 沈焕庭, 等, 2006. 江苏大丰潮滩悬沙级配特征及其动力响应. 海洋学报, 28(4): 87-95. doi: 10.3321/j.issn:0253-4193.2006.04.011
      [40] 任美锷, 主编, 1986. 江苏省海岸带与海涂资源综合调查报告. 北京: 海洋出版社.
      [41] 王颖, 朱大奎, 1994. 海岸地貌学. 北京: 高等教育出版社, 180-181.
      [42] 张忍顺, 1984. 苏北黄河三角洲及滨海平原的成陆过程. 地理学报, 39(2): 173-184. doi: 10.3321/j.issn:0375-5444.1984.02.005
      [43] 张忍顺, 1986. 江苏省淤泥质潮滩的潮流特征及悬移质沉积过程. 海洋与湖沼, 17(3): 235-245. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ198603007.htm
      [44] 张勇, 虞志英, 金镠, 1993. 波浪作用下淤泥质海滩剖面侵蚀过程的计算模式——以江苏北部淤泥质海岸为例. 海洋工程, 11(4): 74-83. https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC199304010.htm
      [45] 张玉芬, 李长安, 陈亮, 等, 2009. 基于磁组构特征的江汉平原全新世古洪水事件. 地球科学——中国地质大学学报, 34(6): 985-992. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200906014.htm
      [46] 朱大奎, 高抒, 1985. 潮滩地貌与沉积的数学模型. 海洋通报, 4(5): 15-21.
      [47] 朱大奎, 许廷官, 1982. 江苏中部海岸发育和开发利用问题. 南京大学学报(自然科学版), 3: 799-818. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ198203023.htm
    • 加载中
    图(8) / 表(1)
    计量
    • 文章访问数:  2959
    • HTML全文浏览量:  118
    • PDF下载量:  61
    • 被引次数: 0
    出版历程
    • 收稿日期:  2009-10-12
    • 刊出日期:  2010-07-01

    目录

      /

      返回文章
      返回