Carbon Isotope Evidence of Gas Hydrate Dissociation in South China Sea
-
摘要: 通过南海南部NS93-5和NS97-37两个柱状沉积物的高分辨率碳、氧同位素分析发现, 末次冰消期(约18 ka)和倒数第二次冰消期(约130 ka)记录到了碳同位素的快速负偏移现象, 与此同时, 氧同位素也发生了明显的快速负偏移, 气温快速回升, 并在氧同位素5期与6期过渡中点(约129.84 ka)出现粉红色红拟抱球虫灭绝现象, 而且两柱样碳、氧同位素的变化趋势与Vostok冰心记录到的大气甲烷含量的变化基本一致.分析认为, 南海记录到的最近2个冰期结束时的碳同位素快速负偏移很可能与天然气水合物的分解释放有关, 即外界温压条件的变化可能导致了南海和/或其他地区海底天然气水合物的失稳分解并释放甲烷, 从而使气候快速变暖、导致海洋缺氧和某些生物种类的灭绝, 同时也加快了冰期的终止.Abstract: High-resolution carbon and oxygen isotope analysis for cores NS93-5 and NS97-37 from southern South China Sea (SCS) shows the rapid negative excursion of carbon isotope in the last deglaciation (about 18 ka) and the penultimate deglaciation (about 130 ka). In the same layer, the oxygen isotope also displays similar phenomena. It is found that the Globigerinoides rubber (Pink) died out in midpoint of MIS 5/6 (about 129.84 ka). The change of carbon and oxygen isotope is in consonance with atmospheric methane concentration from the Vostok ice core. The two rapid negative excursions of carbon isotope recorded in SCS are likely related to gas hydrate dissociation, i.e. the changes of temperature and pressure induced gas hydrate dissociation and released methane in SCS and/or other areas, which made the climate warmer, ocean anoxic and further led to the extinction of some marine organism and accelerated glacial termination.
-
Key words:
- South China Sea /
- gas hydrates /
- carbon isotope
-
图 2 NS93-5及NS97-37柱样碳、氧同位素组成及其与其他资料(Prokopenko and Williams, 2004)的对比
Fig. 2. Carbon and oxygen isotope composition of cores NS93-5 and NS97-37 and the comparison with other data
-
[1] Bains, S., Corfield, R.M., Norris, R.D., 1999. Mechanisms of climate warming at the end of the Paleocene. Science, 285: 724-727. doi: 10.1126/science.285.5428.724 [2] Borowski, W.S., Paull, C.K., Ussler III, W., 1999. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: sensitivity to underlying methane and gas hydrates. Marine Geology, 159(1-4): 131-154. doi: 10.1016/S0025-3227(99)00004-3 [3] Buffett, B.A., 2000. Clathrate hydrates. Annual Review of Earth and Planetary Sciences, 28(1): 477-507, doi: 10.1146/annurev.earth.28.1.477 [4] Buffett, B.A., Zatsepina, O.Y., 1999. Metastability of gas hydrate. Geophysical Research Letters, 26(19): 2981-2984. doi: 10.1029/1999GL002339 [5] Chen, D.F., Li, X.X., Xia, B., 2004. Distribution of gas hydrate stable zones and resource prediction in the Qiongdongnan basin of the South China Sea. Chinese Journal of Geophysics, 47(3): 483-489 (in Chinese with English abstract). doi: 10.1002/cjg2.519/abstract [6] Chen, M.H., Tu, X., Zheng, F., et al., 2000. Relations between sedimentary sequence and paleoclimatic change during last 200 ka in the southern South China Sea. Chinese Science Bulletin, 45(5): 542-548 (in Chinese). doi: 10.1360/csb2000-45-5-542 [7] Crowley, T.J., Baum, S.K., 1997. Effect of vegetation on an ice-age climate model simulation. Journal of Geophysical Research, 102(14): 16463-16480. doi: 10.1029/97JD00536 [8] Dickens, G.R., 2001a. Sulfate profiles and barium fronts in sediment on the Blake Ridge: present and past methane fluxes through a large gas hydrate reservoir. Geochimica et Cosmochimica Acta, 65(4): 529-543. doi: 10.1016/S0016-7037(00)00556-1 [9] Dickens, G.R., 2001b. Modeling the global carbon cycle with a gas hydrate capacitor: significance for the latest Paleocene thermal maximum. In: Paull, C.K., Dillon, W.P., eds., Natural gas hydrates: occurrence, distribution and detection. American Geophysical Union, Geophysical Monograph Series, 124: 19-38. [10] Dickens, G.R., O'Neil, J.R., Rea, D.K., et al., 1995. Dissociation of oceanic methane hydrate as a cause of the carbon excursion at the end of the Paleocene. Paleoceanography, 10: 965-971. doi: 10.1029/95PA02087 [11] Duplessy, J.C., Shackleton, N.J., 1985. Response of global deep-water circulation to the Earth's climate change 135000-107000 years ago. Nature, 316: 500-507. doi: 10.1038/316500a0 [12] Ge, Q., Wang, J.S., Xiang, H., et al., 2006. Computation of thickness of gas hydrate stability zone and potential volume of gas hydrate in South China Sea. Earth Science—Journal of China University of Geosciences, 31(2): 245-249 (in Chinese with English abstract). [13] Gu, S.C., Tu, X., Yan, W., et al., 2002. Paleoenvironmental evolution of sediments by NS97-37 in southern ocean of the South China Sea. A volume of study papers of exclusive economic zone and continental shelf surveying in China. Marine Press, Beijing, 131-142 (in Chinese with English abstract). [14] He, J.X., Zhu, Y.H., Weng, R.N., et al., 2010. Characters of north-west mud diapirs volcanoes in South China Sea and relationship between them and accumulation and migration of oil and gas. Earth Science—Journal of China University of Geosciences, 35(1): 75-86 (in Chinese with English abstract). doi: 10.3799/dqkx.2010.008 [15] Katz, M.E., Pak, D.K., Dickens, G.R., et al., 1999. The source and fate of massive carbon input during the latest Paleocene thermal maximum. Science, 286(5444): 1531-1533. doi: 10.1126/science.286.5444.1531 [16] Kennett, J.P., Cannariato, K.G., Hendy, I.L., et al., 2000. Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials. Science, 288(5463): 128-133. doi: 10.1126/science.288.5463.128 [17] Kennett, J.P., Cannariato, K.G., Hendy, I.L., et al., 2003. Methane hydrates in quaternary climate change. AGU, 1-217. [18] Kienast, M., Steinke, S., Stattegger, K., et al., 2001. Synchronous tropical South China Sea SST change and Greenland warming during deglaciation. Science, 291(5511): 2132-2134. doi: 10.1126/science.1057131 [19] Ku, T.L., Luo, S., 1992. Carbon isotopic variations on glacial-to-interglacial time scales in the ocean: modeling and implications. Paleoceanography, 7(4): 543-562. doi: 10.1029/92PA01760 [20] Loubere, P., 2000. Marine control of biological production in the eastern equatorial Pacific Ocean. Nature, 406: 497-500. doi: 10.1038/35020041 [21] Lu, M.A., Ma, Z.J., Chen, M.H., et al., 2002. Rapid carbon-isotope negative excursion events during the penultimate deglaciation in western pacific marginal sea areas and their origins. Quaternary Sciences, 22(4): 349-358 (in Chinese with English abstract). http://www.cqvip.com/QK/97036X/200204/6526457.html [22] Matsumoto, R., 1995. Cause of the δ13C anomalies of carbonates and a new paradigm "Gas Hydrate Hypothesis". Journal of the Geological Society of Japan, 101: 902-924 (in Japanese). doi: 10.5575/geosoc.101.902 [23] Matsumoto, R., Mahmudy Gharaie, M.H., Kakuwa, Y., 2002. Was the Late Devonian mass extinction caused by massive dissociation of gas hydrate? In: Proceedings of the Fourth International Conference on Gas Hydrates, Yokohama, Japan, May, 19-23: 75-79. [24] McDonnell, S.L., Max, M.D., Cherkis, N.Z., et al., 2000. Tectono-sedimentary controls on the likelihood of gas hydrate occurrence near Taiwan. Marine and Petroleum Geology, 17(8): 929-936. doi:10.1016/S0264-8172(00) 00023-4 [25] Oppo, D.W., Horowitz, M., Lehman, S.J., 1997. Marine core evidence for reduced deep water production during termination Ⅱ followed by a relatively stable substage 5e (Eemian). Paleoceanography, 12(1): 51-63. doi: 10.1029/96PA02413 [26] Paull, C.K., Ussler Ⅲ, W., Dillon, W.P., 1991. Is the extent of glaciation limited by marine gas-hydrates?Geophysical Research Letters, 18: 432-434. doi: 10.1029/91GL00351 [27] Petit, J.R., Jouzel, J., Raynaud, D., et al., 1999. Climate and atmospheric history of the past 420, 000 years from the Vostok ice core, Antarctica. Nature, 399: 429-436. doi: 10.1038/20859 [28] Prokopenko, A.A., Williams, D.F., 2004. Deglacial methane emission signals in the carbon isotopic record of Lake Baikal. Earth and Planetary Science Letters, 218(1-2): 135-147. doi: 10.1016/S0012-821X(03)00637-X [29] Ruppel, C., 1997. Anomalously cold temperatures observed at the base of the gas hydrate stability zone on the U.S. Atlantic passive margin. Geology, 25(8): 699-702. doi:10.1130/0091-7613(1997)025<0699:ACTOAT>2.3.CO [30] Sarnthein, M., Tiedemann, R., 1990. Younger Dryas-style cooling events at glacial termination Ⅰ-Ⅵ at ODP site 658: associated benthic δ13C anomalies constrain meltwater hypothesis. Paleoceanography, 5(6): 1041-1055. doi: 10.1029/PA005i006p01041 [31] Severinghaus, J.P., Brook, E.J., 1999. Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice. Science, 286(5441): 930-934. doi: 10.1126/science.286.5441.930 [32] Severinghaus, J.P., Sowers, T., Brook, E.J., et al., 1998. Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature, 391: 141-146. doi: 10.1038/34346 [33] Stauffer, B., Blunier, T., Dällenbach, A., et al., 1998. Atmospheric CO2 concentration and millennial-scale climate change during the last glacial period. Nature, 392: 59-62. doi: 10.1038/32133 [34] Stott, L.D., Bunn, T., Prokopenko, M., et al., 2002. Does the oxidation of methane leave an isotopic fingerprint in the geologic record? Geochem. Geophys. Geosyst., 3(2): 1012. doi: 10.1029/2001GC000196 [35] Tu, X., Zheng, F., Chen, M.H., et al., 2000. Planktonic foraminifera and paleo-SST of southern slope of South China Sea since 200 ka B.P. Tropical Oceanology, 19(3): 40-49 (in Chinese with English abstract). http://europepmc.org/abstract/CBA/338249 [36] Wang, P.X., 1998. Western Pacific in glacial cycles: seasonality in marginal seas and variabilities of warm pool. Science in China (Series D), 28(1): 1-6 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JDXG199801004.htm [37] Wang, S.H., Yan, W., Song, H.B., 2008. The change of gas hydrate reservoir and its effect on environment in Xisha trough since the last glacial maximum. Earth Science—Journal of China University of Geosciences, 33(1): 74-82 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.010 [38] Yao, B.C., 2001. The gas hydrate in the South China Sea. Journal of Tropical Oceanography, 20(2): 20-28 (in Chinese with English abstract). [39] Zachos, J., Pagani, M., Sloan, L., et al., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517): 686-693. doi: 10.1126/science.1059412 [40] Zhu, Y., Huang, Y., Matsumoto, R., et al., 2003. Geochemical and stable isotopic compositions of pore fluids and authigenic siderite concretions from Site 1146, ODP Leg 184: implications for gas hydrate. Prell, W.L., Wang, P., Blum, P., eds., Proceedings of the Ocean Drilling Program, Scientific Results. College Station, Texas: Texas A & M University (Ocean Drilling Program), 184: 1-15. [41] 陈多福, 李绪宣, 夏斌, 2004. 南海琼东南盆地天然气水合物稳定域分布特征及资源预测. 地球物理学报, 47(3): 483-489. doi: 10.3321/j.issn:0001-5733.2004.03.018 [42] 陈木宏, 涂霞, 郑范, 等, 2000. 南海南部近20万年沉积序列与古气候变化关系. 科学通报, 45(5): 542-548. doi: 10.3321/j.issn:0023-074X.2000.05.019 [43] 葛倩, 王家生, 向华, 等. 2006. 南海天然气水合物稳定带厚度及资源量估算. 地球科学——中国地质大学学报, 31(2): 245-249. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200602014.htm [44] 古森昌, 涂霞, 颜文, 等, 2002. 南海南部海底沉积物古环境演化特征——以97-37柱样为例. 见: 我国专属经济区和大陆架勘测研究论文集. 北京: 海洋出版社, 131-142. [45] 何家雄, 祝有海, 翁荣南, 等, 2010. 南海北部边缘盆地泥底辟及泥火山特征及其与油气运聚关系. 地球科学——中国地质大学学报, 35(1): 75-86. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201001011.htm [46] 卢苗安, 马宗晋, 陈木宏, 等, 2002. 倒数第二次冰消期西太平洋边缘海地区δ13C值快速负偏事件及其成因. 第四纪研究, 22(4): 349-358. doi: 10.3321/j.issn:1001-7410.2002.04.007 [47] 涂霞, 郑范, 陈木宏, 等, 2000. 南海南部陆坡区的浮游有孔虫及其所表征的表层古水温. 热带海洋, 19(3): 40-49. doi: 10.3969/j.issn.1009-5470.2000.03.007 [48] 汪品先, 1998. 冰期旋回中西太平洋边缘海的季节性与暖池的多变性. 中国科学(D辑), 28(1): 1-6. doi: 10.3321/j.issn:1006-9267.1998.01.001 [49] 王淑红, 颜文, 宋海斌, 2008. 末次盛冰期以来西沙海槽天然气水合物储库变化及其对环境的影响. 地球科学——中国地质大学学报, 33(1): 74-82. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200801013.htm [50] 姚伯初, 2001. 南海的天然气水合物矿藏. 热带海洋学报, 20(2): 20-28. doi: 10.3969/j.issn.1009-5470.2001.02.004