3D Ore Deposit Modeling and Application in Digital Mineral Survey
-
摘要: 为弥补现有数字矿床建模技术在地质矿产勘查处理和应用中的不足,从原始勘查数据建库及标准化、多指标单工程矿体自动圈定、基于语义识别的剖面矿体的连接与外推、矿体表面和品位建模、基于剖面矿体线框模型构建矿体表面模型及基于TIN+Octree数据结构和地质统计学理论建立矿体的空间属性模型等5个方面总结提出一套面向地质矿产勘查业务处理的矿床建模流程和总体技术解决方案.提高了地质矿产勘查研究精度,为进一步的矿山开采提供可靠的数据模型.Abstract: To make up the deficiencies of existing digital ore deposit modeling methods and its applications in mineral survey data managements, a method is advanced for ore deposit modeling in geological mineral survey data management. The method is featured with the following improvement: (1) Original mineral survey data standard informationization; (2) Automatic engineering orebody delineation by multi-confine and comlpex industry index; (3) Orebody joint and extrapolate mode in profile map based on semantic identification; (4) Orebody surface modeling by orebody wireframe model contours in profile map; (5) Orebody spatial attribute modeling by TIN+Octree data structure and geostatistics, and its applications in mineral reserve estimation. So that it can enhance research precision on geological mineral survey and provide the credible orebody model for mining design.
-
表 1 某铁矿区矿体圈定工业指标
Table 1. Ore delineation industrial index for one iron ore deposit
矿石类型 类型判定条件 工业品位 边界品位 可采厚度(m) 夹石剔除厚度(m) 磁铁矿 mFe/Tfe≥15% (TFe)≥20% (TFe)≥18% ≥5 5 赤铁矿 mFe/Tfe<15% (TFe)≥30% (TFe)≥20% ≥5 5 黄铁矿 - TS≥13 TS≥8 ≥4 4 注:样品中S含量大于8%时,根据硫化铁中S和Fe的比例0.875,扣除全Fe中硫化铁所带的Fe含量. 表 2 某铁矿区矿体圈定表达式
Table 2. Ore delineation expression for one iron ore deposit
矿体名称 圈定表达式 工业磁铁矿 (mFe/TFe≥0.15)&&(TS<8 && TFe≥20)‖(TS≥8 &&(TFe-0.875×S)≥20) 工业赤铁矿 (mFe/TFe<0.15)&&(TS<8 && TFe≥30)‖(TS≥8 &&(TFe-0.875×S)≥30) 工业黄铁矿 TS≥13 低品位磁铁矿 (mFe/TFe≥0.15) &&(TS<8 && TFe≥15)‖(TS≥8 &&(TFe-0.875×S)≥15) 低品位赤铁矿 (mFe/Tfe<0.15) &&(TS<8 && TFe≥20)‖(TS≥8 &&(TFe-0.875×S)≥20) 低品位黄铁矿 TS≥8 表 3 08号钻孔67号~101号取样段加权平均品位
Table 3. Sample grade weighted average of drill 08 as sample number from 67 to 101
矿体 样号 样品品位(%) 样长(m) 真厚(m) 矿段品位(%) TFe mFe FeO TS TS NTFe Py3 69 11.10 0.20 0.00 8.11 1.77 6.83 8.22 3.98 70 13.24 0.55 0.00 10.02 1.66 71 7.56 0.20 0.00 6.42 1.68 72 5.94 0.30 0.00 8.36 1.72 FeH3 73 20.10 0.40 12.35 0.45 1.66 6.75 1.61 21.22 74 19.68 0.30 11.06 1.09 1.68 75 21.40 0.42 13.51 2.46 1.68 76 23.60 0.60 11.76 2.39 1.73 FeM2 77 21.80 4.80 12.99 1.12 1.97 9.66 2.01 25.66 78 23.80 15.40 11.58 2.21 1.99 79 31.50 24.00 13.79 1.37 2.00 80 27.40 20.10 11.96 2.57 1.87 81 23.70 14.88 11.50 2.87 1.83 FeM3 82 17.50 5.90 9.06 5.12 1.87 7.38 4.77 15.51 83 19.44 8.00 9.39 0.55 1.76 84 15.40 0.70 9.67 3.58 1.95 85 18.32 1.10 9.62 9.84 1.80 FeM2 86 23.80 19.40 16.94 1.44 1.74 11.49 1.91 26.58 87 27.80 23.40 11.76 0.61 2.00 88 24.00 19.30 9.06 2.18 2.00 89 27.40 22.60 9.26 1.86 2.00 90 28.80 23.00 9.52 2.57 1.75 91 27.60 22.30 11.06 2.84 2.00 FeM3 92 17.20 8.00 5.48 6.92 1.86 5.78 6.21 15.95 93 15.10 8.60 5.35 3.81 2.00 94 22.64 10.30 8.29 8.01 1.92 夹石 95 18.60 4.00 0.00 10.08 1.76 96 20.80 5.50 0.00 10.92 1.76 97 7.36 2.00 0.00 2.59 1.76 FeM3 98 17.76 10.70 4.68 1.72 1.76 1.76 1.72 17.76 FeM2 99 20.80 12.30 6.00 2.98 1.76 5.28 1.34 22.20 100 25.00 20.50 6.00 0.66 1.76 101 20.80 16.90 4.07 0.37 1.76 注:NTFe表示扣除TFe中硫化铁所含的Fe含量之后的可利用的净铁含量. -
[1] Bi, L., Wang, L.G., Chen, J.H., et al., 2008. Study of octree-based block model of complex geological bodies. Journal of China University of Mining & Technology, 37(4): 532-537 (in Chinese with English abstract). http://www.researchgate.net/publication/290584691_Study_of_octree-based_block_model_of_complex_geological_bodies [2] Chen, A.B., Qin, D.X., Zhang, X.S., et al., 2004.3D model for deposit based on MICROMINE technology. Geology and Prospecting, 40(5): 77-80 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dzykt200405015 [3] Chen, G.X., Zhang, X.L., Chen, Y.S., 2008. Modeling study of mineral reserves calculation system. China Mine Engineering, 37(3): 33-37 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKS200803015.htm [4] Christiansen, H.N., Sederberg, T.W., 1978. Conversion of complex contour line definitions into polygonal element mosaics. ACM SIGGRAPH Computer Graphics, 12(3): 187-192. doi: 10.1145/965139.807388 [5] Ekoule, A.B., Peyrin, F.C., Odet, C.L., 1991. A triangulation algorithms from arbitrary shaped multiple planar contours. ACM Transactions on Graphics, 10(2): 182-199. doi: 10.1145/108360.108363 [6] Ganapathy, S., Dennephy, T.G., 1982. A new general triangulation method for planar contours. ACM SIGGRAPH Computer Graphics, 16(3): 69-75. doi: 10.1145/965145.801264 [7] Huang, Y.L., Qin, D.X., Li, L.W., 2007. Status of surpac vision and its application in digital mine. Express Information of Mining Industry, 457: 27-30 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYKB200705008.htm [8] Jiang, H., Qin, D.X., Chen, A.B., et al., 2005. Status and tendency of mining software development at home and abroad. Mineral Resources and Geology, 19(110): 422-425 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCYD200504018.htm [9] Keppel, E., 1975. Approximating complex surfaces by triangulation of contour lines. IBM Journal of Research and Development, 19(1): 2-11. doi: 10.1147/rd.191.0002 [10] Li, C.L., Yang, D.L., Li, F.D., et al., 2008. Basic framework of the digital geological survey system and application of its key technology. Geological Bulletin of China, 27(7): 923-944 (in Chinese with English abstract). http://www.researchgate.net/publication/297089126_Basic_framework_of_the_digital_geological_survey_system_and_application_of_its_key_technology?ev=auth_pub [11] Li, C.L., Zhang, K.X., Yu, Q.W., et al., 2004. Inherited technique of data model in different stages in digital mapping. Earth Science—Journal of China University of Geosciences, 29(6): 745-752 (in Chinese with English abstract). http://www.researchgate.net/publication/291105529_Inherited_technique_of_data_model_in_different_stages_in_digital_mapping [12] Liu, H.Y., Liu, X.G., Li, C.L., 2009. Realization and application of 3D reserves estimation system based on geostatistics. Journal of Jilin University (Earth Science Edition), 39(3): 541-546 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200903027.htm [13] Liu, X.G., Chen, G.L., Hou, W.S., et al., 2006.3D complex geological entity modeling method based on line-frame model. Earth Science—Journal of China University of Geosciences, 31(5): 668-672 (in Chinese with English abstract). http://www.cqvip.com/qk/94035X/200605/22815426.html [14] Meyers, D., Skinner, S., Sloan, K., 1992. Surfaces from Contours. ACM Transactions on Graphics, 11(3): 228-258. doi: 10.1145/130881.131213 [15] Qi, A.W., Wu, L.X., Hou, N.K., et al., 2001. Introduction of 3D geoscience model and several key issues of its application to mine. China Mining Magazine, 10(5): 61-64 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKA200105021.htm [16] Shi, W.Z., Wu, L.X., Li, Q.Q., et al., 2007. Model and algorithms for three dimensional spatial information system. Electronics Industry Press, Beijing (in Chinese). [17] Wang, R.J., Wang, Y.T., Wang, G.S., et al., 2008. Analysis on the state of the worldwide miner al exploration. Geological Bulletin of China, 27(1): 154-162 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200801017.htm [18] Wu, J.S., Zhu, G.C., Zeng, X.P., et al., 2004. The research and application of 3D-GIS in solid mineral exploration and mining. Geology and Prospecting, 40(1): 68-72 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT200401015.htm [19] Xu, B., Ma, X.G., Tian, Y.P., 2006. Application recursion arithmetic on single engineering orebody delineation. Nonferrous Metals (Mining Section), 58(6): 21-24 (in Chinese with English abstract). [20] Xu, L., Wu, L.X., Che, D.F., 2007. Strata connection and reference between adjacent boreholes based on stratum sequence and semantics. Geography and Geo-Information Science, 23(1): 1-4 (in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=23732457 [21] Zhang, B.Y., Shang, J.G., Wu, H.M., et al., 2007. Application of 3D geological modeling and visualization in solid mineral resource estimation. Geology and Prospecting, 43(2): 76-81 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT200702016.htm [22] Zhao, P.D., 2002. "Three-component" quantitative resource prediction and assessments: theory and practice of digital mineral prospecting. Earth Science—Journal of China University of Geosciences, 27(5): 482-489 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200205001.htm [23] 毕林, 王李管, 陈建宏, 等, 2008. 基于八叉树的复杂地质体块段模型建模技术. 中国矿业大学学报, 37(4): 532-537. doi: 10.3321/j.issn:1000-1964.2008.04.019 [24] 陈爱兵, 秦德先, 张学书, 等, 2004. 基于MICROMINE矿床三维立体模型的应用. 地质与勘探, 40(5): 77-80. doi: 10.3969/j.issn.0495-5331.2004.05.015 [25] 陈国旭, 张夏林, 陈雅淑, 2008. 固体矿产储量估算系统建模研究. 中国矿山工程, 37(3): 33-37. doi: 10.3969/j.issn.1672-609X.2008.03.012 [26] 黄艳丽, 秦德先, 李连伟, 2007. Surpac Vision及其在数字矿山中的应用. 矿业快报, 457: 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB200705008.htm [27] 姜华, 秦德先, 陈爱兵, 等, 2005. 国内外矿业软件的研究现状及发展趋势. 矿产与地质, 19(110): 422-425. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD200504018.htm [28] 李超岭, 杨东来, 李丰丹, 等, 2008. 中国数字地质调查系统的基本构架及其核心技术的实现. 地质通报, 27(7): 923-944. doi: 10.3969/j.issn.1671-2552.2008.07.002 [29] 李超岭, 张克信, 于庆文, 等, 2004. 数字填图中不同阶段数据模型的继承技术. 地球科学——中国地质大学学报, 29(6): 745-752. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200406013.htm [30] 刘海英, 刘修国, 李超岭, 2009. 基于地质统计学法的三维储量估算系统研究与应用. 吉林大学学报(地球科学版), 39(3): 541-546. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200903027.htm [31] 刘修国, 陈国良, 侯卫生, 等, 2006. 基于线框架模型的三维复杂地质体建模方法. 地球科学——中国地质大学学报, 31(5): 668-672. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200605018.htm [32] 齐安文, 吴立新, 侯恩科, 等, 2001. 三维地学模拟述评及其矿山应用关键问题. 中国矿业, 10(5): 61-64. doi: 10.3969/j.issn.1004-4051.2001.05.019 [33] 史文中, 吴立新, 李清泉, 等, 2007. 三维空间信息系统模型与算法. 北京: 电子工业出版社. [34] 王瑞江, 王义天, 王高尚, 等, 2008. 世界矿产勘查态势分析. 地质通报, 27(1): 154-162. doi: 10.3969/j.issn.1671-2552.2008.01.016 [35] 吴健生, 朱谷昌, 曾新平, 等, 2004. 三维GIS技术在固体矿产勘探和开发中的研究与应用. 地质与勘探, 40(1): 68-72. doi: 10.3969/j.issn.0495-5331.2004.01.015 [36] 徐兵, 马小刚, 田宜平, 2006. 递归算法在单工程矿体边界圈定中的应用. 有色金属(矿山部分), 58(6): 21-24. doi: 10.3969/j.issn.1671-4172.2006.06.007 [37] 徐磊, 吴立新, 车德福, 2007. 基于地层时序与属性语义的相邻钻孔地层连接与推理. 地理与地理信息科学, 23(1): 1-4. doi: 10.3969/j.issn.1672-0504.2007.01.001 [38] 张宝一, 尚建嘎, 吴鸿敏, 等, 2007. 三维地质建模及可视化技术在固体矿产储量估算中的应用. 地质与勘探, 43(2): 76-81. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200702016.htm [39] 赵鹏大, 2002. "三联式"资源定量预测与评价—数字找矿理论与实践探讨. 地球科学——中国地质大学学报, 27(5): 482-489. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200205001.htm