• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    新型混合重取样算法在岩爆预测中的应用

    谷琼 蔡之华 朱莉 王贤明

    谷琼, 蔡之华, 朱莉, 王贤明, 2010. 新型混合重取样算法在岩爆预测中的应用. 地球科学, 35(2): 311-316. doi: 10.3799/dqkx.2010.032
    引用本文: 谷琼, 蔡之华, 朱莉, 王贤明, 2010. 新型混合重取样算法在岩爆预测中的应用. 地球科学, 35(2): 311-316. doi: 10.3799/dqkx.2010.032
    GU Qiong, CAI Zhi-hua, ZHU Li, WANG Xian-ming, 2010. A Novel Hybrid Re-Sampling Algorithm and Its Application in Predicting Rockburst. Earth Science, 35(2): 311-316. doi: 10.3799/dqkx.2010.032
    Citation: GU Qiong, CAI Zhi-hua, ZHU Li, WANG Xian-ming, 2010. A Novel Hybrid Re-Sampling Algorithm and Its Application in Predicting Rockburst. Earth Science, 35(2): 311-316. doi: 10.3799/dqkx.2010.032

    新型混合重取样算法在岩爆预测中的应用

    doi: 10.3799/dqkx.2010.032
    基金项目: 

    国家高技术研究发展“863”计划 No.2009AA12Z117

    襄樊学院规划项目 No.2009YA012

    详细信息
      作者简介:

      谷琼(1973-),女,博士研究生,主要从事地学信息相关方面的智能计算等研究工作.E-mail: gujone@163.com

    • 中图分类号: TU457

    A Novel Hybrid Re-Sampling Algorithm and Its Application in Predicting Rockburst

    • 摘要: 针对岩爆现象发生的不均衡及发生机理受多因素影响的问题,在分析重取样技术的基础上,设计并实现了自适应选择近邻的混合重取样算法,并将其用于岩爆危险性预测.该方法结合过取样和欠取样方法的优势,改进了SMOTE过取样算法在产生合成样本过程中存在的盲目性及只能复制生成数值属性的问题,新算法能根据实例样本集内部分布的真实特性,自适应调整近邻选择策略,对不同属性的数据采取不同的复制方法生成新的少数类实例,控制和提高合成样本的质量;并通过对合成之后的数据集,用改进的邻域清理方法进行适当程度欠取样,去掉多数类中的冗余实例和边界上的噪音数据,减少其规模,在一定程度上达到相对均衡,从而,可有效地处理非均衡数据分类问题,提高分类器的性能.该算法在VCR采场岩爆实例上进行实验,预测的结果与实际情况完全一致,表明在工程实例岩爆危险性实例数据非均衡情况下实施混合重取样方案是可行的,预测准确率高,具有良好的工程应用前景.采用该方法可找到岩爆发生的主控因素,为深部开采工程的合理设计与安全施工提供科学依据.

       

    • 图  1  ADSNN-Hybrid RS算法处理流程图

      Fig.  1.  ADSNN-Hybrid RS algorithm flow chart

      图  2  VCR采场岩爆实例数据生成的修剪过的决策树

      Fig.  2.  Pruned decision tree on rockburst instances at VCR mining stope

      表  1  分类结果

      Table  1.   Classification results

      === Detailed Accuracy By Class ===
      TP rate FP rate Precision Recall F-measure Class
      1 0 1 1 1 发生岩爆
      1 0 1 1 1 不发生岩爆
      === Confusion matrix ===
      a b<--classified as
      3 0|a=发生岩爆
      0 2|b=不发生岩爆
      下载: 导出CSV

      表  2  VCR采场岩爆预测结果

      Table  2.   Rockburst prediction results at VCR mining stope

      样本编号 特征矢量输入 预测输出 实际情况
      100 10010100010100100000000010010001 01 不发生岩爆
      101 10010100100100100000000010001010 01 不发生岩爆
      102 01001010100100100010000000010001 10 发生岩爆
      103 10010100100100001000010000010100 10 发生岩爆
      104 01010001100100100000000001010010 10 发生岩爆
      下载: 导出CSV
    • [1] Chawla, N.V., Bowyer, K.W., Hall, L.O., et al., 2002. SMOTE: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16(3): 321-357.
      [2] Chawla, N.V., Lazarevic, A., Hall, L.O., et al., 2003. SMOTEboost: improving prediction of the minority class in boosting. Lecture Notes in Computer Science, 2838: 107-119. doi. 10.1007/b13634 http://nd.edu/~dial/papers/ECML03.pdf
      [3] Chen, H.J., Li, N.H., Nie, D.X., et al., 2002. A model for prediction of rockburst by artificial neural network. Chinese Journal of Geotechnical Engineering, 24(2): 229-232 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTGC200202023.htm
      [4] Estabrooks, A., 2000. A combination scheme for inductive learning from imbalanced data sets. Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada. http://www.researchgate.net/publication/244448006_A_Combination_Scheme_for_Inductive_Learning_from_Imbalanced_Data_Sets
      [5] Feng, X.T., 2000. Introduction to intelligent rock mechanics. Science Press, Beijing (in Chinese).
      [6] Ge, Q.F., Feng, X.T., 2008. Classification and prediction of rockburst using AdaBoost combination learning method. Rock and Soil Mechanics, 29(4): 943-948 (in Chinese with English abstract). http://www.researchgate.net/publication/292298061_Classification_and_prediction_of_rockburst_using_AdaBoost_combination_learning_method
      [7] Han, H., Wang, W.Y., Mao, B.H., 2005. Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. Lecture Notes in Computer Science, 3644(1): 878-887. doi. 10.1007/11538059_91 http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=09AE1A9AE1C42CFB8FAD9D86B2547B3B?doi=10.1.1.308.9315&rep=rep1&type=pdf
      [8] Hart, P., 1968. The condensed nearest neighbor rule(Corresp. ). IEEE Transactions on Information Theory, 14(3): 515-516. doi: 10.1109/TIT.1968.1054155
      [9] Jiang, T., Huang, Z.Q., Zhao, Y.Y., et al., 2003. Application of grey system optimal theory model in forecasting rockburst. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 24(2): 37-40 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbslsdxyxb200302012
      [10] Kubat, M., Matwin, S., 1997. Addressing the curse of imbalanced training sets: one-sided selection. Proceedings of the Fourteenth International Conference on Machine Learning. Morgan Kaufmann Publishers, Inc., 179-186. http://ci.nii.ac.jp/naid/10012743635
      [11] Laurikkala, J., 2001. Improving identification of difficult small classes by balancing class distribution. Lecture Notes in Computer Science, 2101: 63-66. doi. 10.1007/3-540-48229-6_9 http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=0E369DACF967C4C1A9853A603C6AB1E7?doi=10.1.1.309.2519&rep=rep1&type=pdf
      [12] Quinlan, J.R., 1993. C4.5: programs for machine learning. Morgan Kaufmann. doi. 10.1007/BF00993309
      [13] Stanfill, C., Waltz, D., 1986. Toward memory-based reasoning. Communications of the ACM, 29(12): 1213-1228. doi: 10.1145/7902.7906
      [14] Tomek, I., 1976. Two modifications of CNN. IEEE Transactions on Systems, Man and Cybernetics, 6(6): 769-772. http://ieeexplore.ieee.org/document/4309452/references
      [15] Yang, Y.C., Zhu, J., 2001. An matter-elements model and its application to classified prediction of rockburst. Systems Engineering—Theory & Practice, 21(8): 125-129 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XTLL200108023.htm
      [16] Yang, Z.M., Qiao, L.Y., Peng, X.Y., 2007. Research on detamining method for imbalanced dataset based on improved SMOTE. Acta Electronica Sinica, 35(12A): 22-26 (in Chinese with English abstract). http://www.cqvip.com/QK/71135X/201107/27251556.html
      [17] Zhao, H.B., 2005. Classification of rockburst using support vector machine. Rock and Soil Mechanics, 26(4): 642-644(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX200504029.htm
      [18] 陈海军, 郦能惠, 聂德新, 等. 2002. 岩爆预测的人工神经网络模型. 岩土工程学报, 24(2): 229-232. doi: 10.3321/j.issn:1000-4548.2002.02.023
      [19] 冯夏庭. 2000. 智能岩石力学导论. 北京: 科学出版社. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX902.024.htm
      [20] 葛启发, 冯夏庭. 2008. 基于AdaBoost组合学习方法的岩爆分类预测研究. 岩土力学, 29(4): 943-948. doi: 10.3969/j.issn.1000-7598.2008.04.017
      [21] 姜彤, 黄志全, 赵彦彦, 等. 2003. 灰色系统最优归类模型在岩爆预测中的应用. 华北水利水电学院学报, 24(2): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-HBSL200302012.htm
      [22] 杨莹春, 诸静. 2001. 物元模型及其在岩爆分级预报中的应用. 系统工程理论与实践, 21(8): 125-129. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL200108023.htm
      [23] 杨智明, 乔立岩, 彭喜元. 2007. 基于改进SMOTE的不平衡数据挖掘方法研究. 电子学报, 35(12A): 22-26.
      [24] 赵洪波. 2005. 岩爆分类的支持向量机方法. 岩土力学, 26(4): 642-644. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200504029.htm
    • 加载中
    图(2) / 表(2)
    计量
    • 文章访问数:  2840
    • HTML全文浏览量:  121
    • PDF下载量:  57
    • 被引次数: 0
    出版历程
    • 收稿日期:  2009-04-26
    • 刊出日期:  2010-03-01

    目录

      /

      返回文章
      返回