• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    火星表面沙丘中冲沟的成因及对撞击坑壁冲沟成因的启发

    岳宗玉 谢红接 刘建忠 欧阳自远

    岳宗玉, 谢红接, 刘建忠, 欧阳自远, 2010. 火星表面沙丘中冲沟的成因及对撞击坑壁冲沟成因的启发. 地球科学, 35(2): 291-301. doi: 10.3799/dqkx.2010.030
    引用本文: 岳宗玉, 谢红接, 刘建忠, 欧阳自远, 2010. 火星表面沙丘中冲沟的成因及对撞击坑壁冲沟成因的启发. 地球科学, 35(2): 291-301. doi: 10.3799/dqkx.2010.030
    YUE Zong-yu, XIE Hong-jie, LIU Jian-zhong, OUYANG Zi-yuan, 2010. Potential Origination of Gullies Developed on Sand Dunes and Its Implications to Gullies on Crater Rims. Earth Science, 35(2): 291-301. doi: 10.3799/dqkx.2010.030
    Citation: YUE Zong-yu, XIE Hong-jie, LIU Jian-zhong, OUYANG Zi-yuan, 2010. Potential Origination of Gullies Developed on Sand Dunes and Its Implications to Gullies on Crater Rims. Earth Science, 35(2): 291-301. doi: 10.3799/dqkx.2010.030

    火星表面沙丘中冲沟的成因及对撞击坑壁冲沟成因的启发

    doi: 10.3799/dqkx.2010.030
    基金项目: 

    国家自然科学基金项目 Nos.40573047

    国家自然科学基金项目 Nos.40871202

    国家高技术研究发展计划专项 Nos.2008AA12A213

    国家高技术研究发展计划专项 Nos.2009AA12Z310

    详细信息
      作者简介:

      岳宗玉(1980-),男,博士,主要从事月球与火星遥感地质学研究.E-mail: yuezongyu1980@163.com

    • 中图分类号: P185.3;P627

    Potential Origination of Gullies Developed on Sand Dunes and Its Implications to Gullies on Crater Rims

    • 摘要: 借助于15幅高分辨率的HiRISE影像与107幅MOC影像,对火星表面撞击坑壁与沙丘中出现的非常年轻冲沟形态特征进行了详细研究,并据此检验冲沟成因假说.影像特征分析结果首先支持沙丘中冲沟是由液态水携带泥沙冲刷而成的理论,而撞击坑壁出现的多边形土证实火星表面下冰的存在,且在适当的条件下可转变为液态水形成冲沟.

       

    • 图  1  不同类型的沟头

      a.宽广型沟头;b.狭长型沟头;c.充填型沟头;d.不明显型沟头.以上4幅图像均是据MOC影像,向上表示正北方向.a、b、c、d图像使用的MOC影像编号分别为m0302214.imq、m0705535.imq、m1101601.imq和e1004872.imq

      Fig.  1.  Alcoves of different types of gullies

      图  2  沟谷和沟尾

      a.发育在土质松软的岩层上的冲沟,其沟谷发育密度大但规模小,沟尾也不明显,MOC影像编号为r1501265.imq;b.发育在坚硬岩层上的冲沟,沟谷规模较大但数量较少,沟尾堆积了大量沉积物,MOC影像编号为e1002934.imq;c,d表示冲沟中的蠕动现象,MOC影像编号分别为m1800897.imq、e1104033.imq.以上图像向上为正北方向

      Fig.  2.  Channels and aprons

      图  3  冲沟和其他地貌的覆盖关系

      a.覆盖在风成地貌之上的冲沟,MOC影像编号为m0700752.imq;b.在沟尾覆盖了一些小型撞击坑,MOC影像编号为2300984.imq.各幅图像据MOC影像,向上为正北方向

      Fig.  3.  The overlapping relationship between gullies and other features

      图  4  Ⅱ型冲沟的狭小沟头

      a.卵圆型沟头,影像编号为PSP_001440_1225.jp2;b.不明显型沟头,影像编号为PSP_4196_1325.jp2;c.在Ⅱ型冲沟的沟头分布的黑色点状区域,其排列方向和冲沟方位一致,影像编号为PSP_001440_1225.jp2.据HiRISE影像,向上为正北方向

      Fig.  4.  The narrow alcoves of types Ⅱ gully

      图  5  Ⅱ型冲沟的沟谷特征

      具有明显沟头的沟谷(a)比没有沟头的沟谷(b)要直很多;两条沟谷交汇后比两条支流都要宽阔(a、b中箭头所示).以上两幅图像均据HiRISE影像数据,向上为正北方向;a、b影像编号分别为PSP_001440_1255.jp2、PSP_004196_1325.jp2

      Fig.  5.  The characteristics of type Ⅱ gully

      图  6  Ⅱ型冲沟的沟尾(箭头所示)

      a.具有环形隆起的沟尾,并在其内部出现小黑点;b、c.末梢具有沙球移动时留下痕迹的沟尾;d具有大量分支的沟尾.以上4幅图像均来源于HiRISE影像数据,向上为正北方向;a、b、c影像编号为PSP_001440_1225.jp2;d影像编号为PSP_004196_1325.jp2

      Fig.  6.  The aprons of type Ⅱ gully

      图  7  沙丘在不同季节的变化

      影像a~e均来自于同一个地区的HiRISE影像,影像编号分别为(a)PSP_001440_1225,Ls=136,2006;(b)PSP_001981_1225,Ls=158,2006;(c)PSP_002337_1255,Ls=173,2007;(d)PSP_004038_1255,Ls=253,2007;(e)PSP_004249_1255,Ls=263,2007;Ls表示各幅影像获取时火星的日心轨道黄经,向上为正北方向

      Fig.  7.  The transformations of sand dunes in different seasons

      图  8  出现在撞击坑壁上的Ⅱ型冲沟与出现在沙丘中的Ⅰ型冲沟

      a.在撞击坑壁上也发育了与Ⅱ型冲沟非常相似的冲沟;b.在这些冲沟的沟头部位发现的多边形冻土;c.在沙丘中发育的I型冲沟.以上图像均来自于HiRISE影像,向上为正北方向,a、b、c影像编号分别为PSP_001697_1390.jp2、PSP_001330_1395.jp2、PSP_004196_1325.jp2

      Fig.  8.  Types Ⅱ gully on crater'srim and type Ⅰ gully on sand dunes

    • [1] Arfstrom, J.D., 2002. A model of recent Martian gully and alcove formation by seepage of water. Lunar Planet. Sci., XXXIII, abstract No. 1174. http://www.lpi.usra.edu/meetings/lpsc2002/pdf/1174.pdf
      [2] Balme, M., Mangold, N., Baratoux, D., et al., 2006. Orientation and distribution of recent gullies in the southern hemisphere of Mars: observations from high resolution stereo camera/Mars express (HRSC/MEX) and Mars Orbiter Camera/ Mars Global Surveyor (MOC/MGS) data. J. Geophys. Res., 111(E5): E05001. doi: 10.1029/2005JE002607
      [3] Bart, G.D., 2007. Comparison of small lunar landslides and Martian gullies. Icarus, 187(2): 417-421. doi: 10.1016/j.icarus.2006.11.004
      [4] Burt, D.M., Knauth, L.P., Klonowski, S., 2002. Dense eutectic brines on Mars: they could be both common and Ca-rich. Lunar Planet. Sci., XXIII, abstract No. 1240. http://adsabs.harvard.edu/abs/2002LPI....33.1240B
      [5] Christensen, P.R., 2003. Formation of recent Martian gullies through melting of extensive water-rich snow deposits. Nature, 422(6927): 45-48. doi: 10.1038/nature01436
      [6] Coleman, K.A., Dixon, J.C., Howe, K.L., et al., 2008. Simulation of Martian gullies using water/ice slush. Lunar Planet. Sci., XXXIX, abstract No. 2240. http://adsabs.harvard.edu/abs/2008LPI....39.2240C
      [7] Costard, F., Forget, F., Mangold, N., et al., 2002. Formation of recent Martian debris flows by melting of near-surface ground ice at high obliquity. Science, 295(5552): 110-113. doi: 10.1126/science.1066698
      [8] Costard, F., Mangold, N., Baratoux, D., et al., 2007. Current gullies activity: dry avalanches at seasonal defrosting as seen on HiRISE images. Seventh International Conference on Mars, abstract No. 3133. http://adsabs.harvard.edu/abs/2007LPICo1353.3133C
      [9] Edgett, K.S., Malin, M.C., Williams, R.M.E., et al., 2003. Polar- and middle-latitude Martian gullies: a view from MGS MOC after 2 Mars years in the mapping orbit. Lunar Planet. Sci., XXXIV, abstract No. 1038. http://www.researchgate.net/profile/Ken_Edgett/publication/252176564_Polar_and_Middle-Latitude_Martian_Gullies_A_View_from_MGS_MOC_After_2_Mars_Years_in_the_Mapping_Orbit/links/00b7d5388cd881822b000000.pdf
      [10] Gaidos, E.J., 2001. Cryovolcanism and the recent flow of liquid water on Mars. Icarus, 153(1): 218-223. doi: 10.1006/icar.2001.6649
      [11] Grotzinger, J.P., Arvidson, R.E., Bell III, J.F., et al., 2005. Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns Formation, Meridiani Planum, Mars. Earth and Planetary Science Letters, 240(1): 11-72. doi: 10.1016/j.epsl.2005.09.039
      [12] Hartmann, W.K., 2003. Upper latitude ice flow, gullies, and long-term glacial history. Third Mars Polar Science Conference, abstract No. 8110. http://www.lpi.usra.edu/meetings/polar2003/pdf/download/dnld13.pdf
      [13] Hecht, M.H., Bridges, N.T., 2003. A mechanism for recent production of liquid water on Mars. Lunar Planet. Sci., XXXIV, abstract No. 2073. http://adsabs.harvard.edu/abs/2003LPI....34.2073H
      [14] Heldmann, J.L., Carlsson, E., Johansson, H., et al., 2007. Observations of Martian gullies and constraints on potential formation mechanisms II. The northern hemisphere. Icarus, 188(2): 324-344. doi: 10.1016/j.icarus.2006.12.010
      [15] Heldmann, J.L., Mellon, M.T., 2004. Observations of Martian gullies and constraints on potential formation mechanisms. Icarus, 168(2): 285-304. doi: 10.1016/j.icarus.2003.11.024
      [16] Kirk, R.L., Archinal, B.A., Lee, E.M., et al., 2001. Global digital image mosaics of Mars: assessment of geodetic accuracy. Lunar Planet. Sci., XXXII, abstract No. 1856. http://adsabs.harvard.edu/abs/2001LPI....32.1856K
      [17] Kirk, R.L., Howington-Kraus, E., Rosiek, M.R., et al., 2007. Ultrahigh resolution topographic mapping of Mars with HiRISE stereo images: methods and first results. Lunar Planet. Sci., XXXVIII, abstract No. 1428. http://adsabs.harvard.edu/abs/2007LPI....38.1428K
      [18] Malin, M.C., Danielson, G.E., Ingersoll, A.P., et al., 1992. Mars observer camera. J. Geophys. Res., 97(E5): 7699-7718. doi: 10.1029/92JE00340
      [19] Malin, M.C., Danielson, G.E., Ravine, M.A., et al., 1991. Design and development of the Mars observer camera. Int. J. Imag. Syst. Technol., 3(2): 76-91. doi: 10.1002/ima.1850030205
      [20] Malin, M.C., Edgett, K.S., 2000. Evidence for recent groundwater seepage and surface runoff on Mars. Science, 288(5475): 2330-2335. doi: 10.1126/science.288.5475.2330
      [21] Mangold, N., Baratoux, D., Costard, F., et al., 2008. Current gullies activity: dry avalanches observed over seasonal frost as seen on HiRISE images. Workshop on Martian Gullies: theories and Tests, abstract No. 8005. http://adsabs.harvard.edu/abs/2008LPICo1303...68M
      [22] Mangold, N., Costard, F., Forget, F., 2003. Debris flows over sand dunes on Mars: evidence for liquid water. J. Geophys. Res., 108(E4): 5027. doi: 10.1029/2002JE001958
      [23] Márquez, A., Pablo, M. Á., Oyarzun, R., et al., 2005. Evidence of gully formation by regional groundwater flow in the Gorgonum-Newton region (Mars). Icarus, 179(2): 398-414. doi: 10.1016/j.icarus.2005.07.020
      [24] Mellon, M.T., Phillips, R.J., 2001. Recent gullies on Mars and the source of liquid water. J. Geophys. Res., 106(E10): 23165-23179. doi: 10.1029/2000JE001424
      [25] Miyamato, H., Dohm, J.M., Baker, V.R., et al., 2004. Dynamics of unusual debris flows on Martian sand dunes. Geophys. Res. Lett., 31(13): L13701.1-L13701.4. doi: 10.1029/2004GL020313
      [26] Musselwhite, D.S., Swindle, T.D., Lunine, J.I., 2001. Liquid CO2 breakout and the formation of recent small gullies on Mars. Geophys. Res. Lett., 28(7): 1283-1285. doi: 10.1029/2000GL012496
      [27] Reiss, D., van Gasselt, S., Neukum, G., et al., 2004. Absolute dune ages and implications for the time of formation of gullies in Nirgal Vallis, Mars. J. Geophys. Res., 109(E6): E6007.1-E6007.9. doi: 10.1029/2004JE002251
      [28] Treiman, A.H., 2008. Wind and the origin of Martian gullies: a local and regional test in Cimmeria. Workshop on Martian Gullies: Theories and Tests, abstract No. 8020. http://www.lpi.usra.edu/meetings/gullies2008/pdf/8020.pdf
      [29] Yue, Z., Xie, H., 2007. Wind a potential mechanism of Mars gully formation. American Geophysical Union, Fall Meeting, abstract No. P31B-0436. http://adsabs.harvard.edu/abs/2007agufm.p31b0436y
    • 加载中
    图(8)
    计量
    • 文章访问数:  3095
    • HTML全文浏览量:  136
    • PDF下载量:  39
    • 被引次数: 0
    出版历程
    • 收稿日期:  2009-03-15
    • 刊出日期:  2010-03-01

    目录

      /

      返回文章
      返回