Geochronology and Its Geological Implications of LA-ICP-MS Zircon U-Pb Dating of Granodiorite Porphyries in Dabaoshan Polymetallic Ore Deposit, North Guangdong Province
-
摘要: 对粤北大宝山钼钨多金属矿区的花岗闪长斑岩进行了锆石阴极发光显微结构观察和LA-ICP-MS锆石微区U-Pb定年.在锆石阴极发光图像中, 两个花岗闪长斑岩样品中的锆石颗粒具有明显的振荡环带, 为典型的岩浆锆石.LA-ICP-MS U-Pb定年结果显示: 大宝山花岗闪长斑岩样品中具岩浆环带锆石区域12个分析点的206Pb/238U加权平均年龄为175.8±1.5 Ma(MSWD=0.037), 船肚花岗闪长斑岩样品中具岩浆环带锆石区域16个分析点的206Pb/238U加权平均年龄为175.0±1.7 Ma(MSWD=0.41).它们的形成时代约175 Ma, 为燕山早期第Ⅰ阶段(180~170 Ma)产物.本次对大宝山矿区花岗闪长斑岩形成时代的准确厘定, 为大宝山和船肚花岗闪长斑岩原本连为一体被后期构造错断的认识提供了新证据, 岩体错断部位是矿区Mo-W矿进一步勘探的重要方向.结合相关研究表明, 其成岩成矿动力学背景与邻区岩体相似, 为南岭地区同一期岩石圈伸展-减薄事件的产物.同时启示我们, 在南岭地区还存在燕山早期第一阶段(180~170 Ma)利于形成Mo-W矿的花岗岩类小岩体未被揭露.
-
关键词:
- 花岗闪长斑岩 /
- 锆石 /
- LA-ICP-MS U-Pb定年 /
- 大宝山矿区
Abstract: The dating of LA-ICP-MS zircon U-Pb was carried out for granodiorite porphyries at Dabaoshan polymetallic ore deposit in North Guangdong Province. In cathodoluminescence (CL) image, most zircons in two granodiorite porphyry samples exhibit oscillatory zoning, which is typical for magmatic zircon. The dating of LA-ICP-MS zircon U-Pb of two samples shows the results that 12 points of oscillatory zoned domains of Dabaoshan granodiorite porphyry sample yields a group of weighted mean 206Pb/238U ages at (175.8±1.5)Ma (MSWD=0.037) and 16 points of oscillatory zoned domains of Chuandu granodiorite porphyry yields a group of weighted mean 206Pb/238U ages at (175.0±1.7) Ma (MSWD=0.41). So the epoch of granodiorite porphyry emplacement is nearly 175 Ma, belonging to the first stage of the early Yanshanian (180-170 Ma). According to the precise ages we have obtained, Dabaoshan and Chuandu granodiorite porphyries are a whole magamtic rock divided by the post-mineralization fault, and the faulted space is the most important direction for further exploration of Mo-W. The study, together with others, suggests that its geodynamic setting was the same as that of the near magamatic rocks, which formed in the same episode lithosphere extension event in Nanling region. In addition, we conclude that in the first stage of the early Yanshanian, some granodiorite porphyries favorable to forming Mo-W deposits have been undiscovered in Nanling region.-
Key words:
- granodiorite porphyry /
- zircon /
- LA-ICP-MS U-Pb geochronology /
- Dabaoshan ore deposit
-
大宝山多金属矿床为我国著名的大型矿床之一(图 1).早在解放前,相继有冯景兰、朱庭祜、徐瑞麟等老一辈地质学家进行过矿床地质的调查.解放后,随着研究工作的深入,发现了许多新矿床,使本区成为华南重要的铁、铜、铅、锌、硫矿产资源基地之一(刘孝善和周顺之,1985).前人对大宝山矿区的矿床地质、成矿条件、成矿机理、成矿模式等有过研究(刘孝善和周顺之,1985;刘姤群等,1985;罗年华,1985;庄明正,1986;葛朝华和韩发, 1986, 1987;黄书俊等,1987;汤吉方等,1992;蔡锦辉和刘家齐,1993a;裴太昌等,1994;何金祥等,1996;宋世明等,2007),并对该地区的花岗闪长斑岩和次英安斑岩进行了地球化学和同位素年代学研究(刘姤群等,1985;葛朝华和韩发,1987;汤吉方等,1992;蔡锦辉和刘家齐,1993b;裴太昌等,1994).但前人获取的年代学数据中,花岗闪长斑岩年龄跨度在155~97 Ma之间,次英安斑岩年龄为195.5~168 Ma和441 Ma.不同的研究者所获得的年龄并不一致,同一岩性的岩体不同的测试方法所给出的年龄也不相同,导致无法对成岩年龄准确限定,制约了对矿床成因、成矿模式的研究.2008年笔者借助在大宝山矿区开展危机矿山接替资源研究的契机,对与Mo-W成矿有关的花岗闪长斑岩进行了LA-ICP-MS锆石微区U-Pb定年,获得了高精度的年龄数据,并与南岭中段其他相关矿床进行了对比,阐述了其地质意义.
1. 矿区地质概况
大宝山多金属矿床位于广东省北部、南岭花岗岩带中段,大地构造位置上位于南岭东西向构造带南侧、北江北东向断裂与近东西向大东山-贵东构造岩浆岩带的复合部位(图 1).区内构造以断裂为主,主要有近东西向船肚-大宝山断裂(F1),北东-南北向九曲岭断裂(F2a,F2b)和徐屋断裂(F3)及北北西向的大宝山断裂(F4)和丘坝断裂(F5).其中,九曲岭断裂(F2a)错断船肚-大宝山东西向断裂(F1),并使沿船肚-大宝山断裂(F1)侵入的花岗闪长斑岩体分成两段(王殿宝等,2006),即船肚花岗闪长斑岩体和大宝山花岗闪长斑岩体.矿区出露的地层主要有寒武系浅变质砂页岩及板岩,中下泥盆统桂头群砂砾岩及砂页岩,中泥盆统东岗岭组灰岩、上泥盆统天子岭组灰岩和下侏罗统兰塘群砂页岩.矿区出露的岩浆岩主要为次英安斑岩和花岗闪长斑岩.其中,与成矿有关的岩体为大宝山次英安斑岩、大宝山花岗闪长斑岩和船肚花岗闪长斑岩.大宝山花岗闪长斑岩侵入于次英安斑岩及侏罗系地层中.次英安斑岩具脱玻结构、斑状结构和流动构造;主要斑晶矿物为中性斜长石和石英,具强烈硅化、绢云母化和黄铁矿化.花岗闪长斑岩均为斑状结构和块状构造;主要由石英、斜长石、钾长石和黑云母组成,具强烈云英岩化、硅化、绢云母化、黄铁矿化和辉钼矿化.在副矿物组合上次英安斑岩和花岗闪长斑岩均有磁铁矿、钛铁矿、锆石、磷灰石和榍石等(刘姤群等,1985;汤吉方等,1992;蔡锦辉和刘家齐, 1993a, 1993b).
前人研究表明(刘姤群等,1985;汤吉方等,1992),矿区两期岩浆的侵入相应发生了两次成矿作用.与次英安斑岩有成因联系的黄铜矿-黄铁矿体、铅锌矿体及菱铁矿体分布在大宝山次英安斑岩墙东侧东岗岭组中.矿体呈层状、似层状、透镜状和脉状分布.与花岗闪长斑岩有关的斑岩型-矽卡岩型钼钨矿体分布在大宝山和船肚花岗闪长斑岩体的内外接触带(图 1).该矿床围岩蚀变普遍而强烈,空间上自西向东,从北往南,有逐步减弱的趋势.其蚀变类型主要有:角岩化、矽卡岩化(包括石榴石、透辉石、阳起石、透闪石、绿帘石等蚀变)、钾长石化、碳酸盐化、黑云母化及绢云母化等.
2. 样品及分析方法
在大宝山ZK5404钻孔69~74 m处和船肚花岗闪长斑岩与泥盆系天子岭组灰岩接触带附近的岩体中,本次研究共采集2块花岗闪长斑岩样品.样品编号为ZK5404和CD-22(图 1).锆石分选在中国地质大学(武汉)选矿实验室完成.在测试之前,在中国地质大学地质过程与矿产资源国家重点实验室进行透射、反射光拍照,并利用JEOL JXA-8100型电子探对锆石晶体进行阴极发光(CL)照相.2个样品中的锆石为半自形到自形,锆石的长度为60~200 μm,长宽比为1.5∶1~2.5∶1.CL图像揭示锆石存在明显的核-边结构.锆石边大多具有清楚的振荡环带,为典型的岩浆锆石(Crofu et al., 2003;吴元保和郑永飞,2004;吴元保等,2005),而核部具强的发光性,无明显的结构,部分依稀可见残留的岩浆环带(图 2a中2.2、13;图 2b中3).
锆石U-Pb同位素分析在中国地质大学地质过程与矿产资源国家重点实验室的LA-ICP-MS仪器上采用标准测定程序进行,详细的实验原理及流程见参考文献(Yuan et al., 2004).测试点的选取首先根据锆石反射光和透射光照片进行初选,再与CL照片对比,力求避开内部裂隙和包裹体,以获得尽可能准确的年龄信息(何世平等,2008).在每个样品靶测试前,先测定1个NIST610标准样,2个91500标准样,2个GJ-1标准样.每5个样品点完成后测试2个91500标准样,1个GJ-1标准样.每个样品靶测试完后,再测定2个91500标准样,2个GJ-1标准样,1个NIST610标准样.本次共测试了28个GJ-1标准样,206Pb/238U年龄为592.6~603.4 Ma.锆石年龄采用国际标准锆石91500作为外标标准物质,元素含量采用NIST610作为外标,29Si为内标.测试结果通过Macquarie University的GLITTER软件计算得出,并按照Andersen(2002)的ComPbCon#3-151程序对其进行了普通铅校正,年龄计算及谐和图采用Ludwig(2001)的Isoplot软件完成.
3. 结果
笔者对样品ZK5404中的15颗锆石进行了18个点的年龄测定,对样品CD-22中的17颗锆石进行了19个点的年龄测定,结果列于表 1、表 2和图 3.
表 1 粤北大宝山多金属矿区花岗闪长斑岩(样品ZK5404)单颗粒锆石U-Pb同位素测定结果Table Supplementary Table Results of U-Pb isotopic dating for the single-grain zircon for granodiorite porphyry sample ZK5404 at Dabaoshan ore deposit, North Guangdong样品编号 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 204Pb(10-6) 206Pb(10-6) 207Pb(10-6) 208Pb(10-6) 232Th(10-6) 238U(10-6) Th/U 比值 1σ 比值 1σ 比值 1σ 比值 1σ t(Ma) 1σ t(Ma) 1σ t(Ma) 1σ t(Ma) 1σ ZK5404.1 0.051 0 0.001 6 0.194 8 0.005 9 0.027 7 0.000 5 0.008 3 0.000 2 240 39 181 5 176 3 167 4 < 1.67 184.53 10.18 4.76 290.97 1 588.95 0.18 ZK5404.2.1 0.050 9 0.001 6 0.194 0 0.006 0 0.027 6 0.000 5 0.008 3 0.000 2 238 41 180 5 176 3 167 4 < 1.89 168.70 9.31 5.84 357.54 1 457.70 0.25 ZK5404.2.2 0.080 5 0.003 2 1.863 9 0.065 8 0.167 9 0.002 9 0.050 2 0.000 8 1 210 79 1 068 23 1 000 16 989 15 < 1.62 910.54 83.16 54.39 505.54 1 288.85 0.39 ZK5404.3 0.054 4 0.001 7 0.207 6 0.006 5 0.027 7 0.000 5 0.008 7 0.000 2 388 40 192 5 176 3 176 4 < 1.17 197.51 11.66 10.05 583.35 1 705.71 0.34 ZK5404.4 0.052 5 0.001 6 0.201 3 0.005 9 0.027 8 0.000 5 0.008 7 0.000 2 307 37 186 5 177 3 175 4 < 2.06 205.94 11.73 9.19 535.85 1 770.03 0.30 ZK5404.5.1 0.099 5 0.003 6 3.086 1 0.096 5 0.224 9 0.003 9 0.065 7 0.001 1 1 615 68 1 429 24 1 308 20 1 286 20 < 1.26 471.05 51.98 12.22 85.60 500.58 0.17 ZK5404.5.2 0.058 4 0.001 9 0.223 1 0.007 2 0.027 7 0.000 5 0.008 2 0.000 2 544 41 204 6 176 3 164 4 < 1.91 186.23 11.84 8.39 523.33 1 611.08 0.32 ZK5404.6 0.050 7 0.002 1 0.193 6 0.007 9 0.027 7 0.000 5 0.008 6 0.000 3 225 60 180 7 176 3 173 6 < 2.22 128.54 7.10 4.48 265.43 1 112.07 0.24 ZK5404.7 0.054 2 0.002 9 0.205 6 0.010 2 0.027 5 0.000 5 0.008 6 0.000 1 381 122 190 9 175 3 173 3 1.53 230.35 15.04 12.27 633.62 1 999.39 0.32 ZK5404.8.1 0.052 1 0.002 0 0.199 5 0.007 5 0.027 8 0.000 5 0.008 3 0.000 3 291 53 185 6 176 3 167 5 < 1.70 218.92 12.49 8.21 503.68 1 897.17 0.27 ZK5404.8.2 0.050 8 0.002 6 0.252 0 0.012 5 0.036 0 0.000 7 0.009 1 0.000 4 233 78 228 10 228 4 183 8 < 1.79 41.13 2.29 1.11 62.03 275.17 0.23 ZK5404.9 0.053 7 0.002 0 0.203 2 0.007 4 0.027 5 0.000 5 0.008 7 0.000 3 357 49 188 6 175 3 175 5 1.85 180.16 10.59 7.95 465.83 1 579.51 0.29 ZK5404.10 0.052 2 0.002 5 0.240 9 0.011 3 0.033 5 0.000 7 0.011 8 0.000 4 292 71 219 9 212 4 237 9 < 1.39 56.51 3.23 2.57 111.18 406.21 0.27 ZK5404.11 0.050 6 0.002 0 0.193 4 0.007 4 0.027 7 0.000 5 0.008 4 0.000 3 224 55 180 6 176 3 170 5 < 1.47 147.67 8.22 5.65 341.81 1 285.71 0.27 ZK5404.12 0.050 0 0.002 0 0.190 7 0.007 6 0.027 7 0.000 5 0.008 4 0.000 3 195 57 177 6 176 3 168 6 < 1.34 207.77 11.43 5.83 356.19 1 813.27 0.20 ZK5404.13 0.158 7 0.005 8 6.872 4 0.247 2 0.314 1 0.005 9 0.088 4 0.002 7 2 442 36 2 095 32 1 761 29 1 713 51 < 1.64 205.92 35.96 20.98 121.01 158.29 0.76 ZK5404.14 0.051 7 0.002 9 0.195 8 0.010 5 0.027 5 0.000 5 0.008 6 0.000 1 272 132 182 9 175 3 174 3 < 1.57 163.65 10.21 7.09 358.70 1 429.96 0.25 ZK5404.15 0.055 7 0.002 2 0.544 5 0.021 4 0.070 8 0.001 3 0.020 6 0.000 7 442 54 441 14 441 8 412 13 < 1.35 243.09 14.93 20.58 510.13 829.28 0.62 表 2 粤北大宝山多金属矿区花岗闪长岩(样品CD-22)单颗粒锆石U-Pb同位素测定结果Table Supplementary Table Results of U-Pb isotopic dating for the single-grain zircon for granodiorite sample CD-22 at Dabaoshan ore deposit, North Guangdong样品编号 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 204Pb(10-6) 206Pb(10-6) 207Pb(10-6) 208Pb(10-6) 232Th(10-6) 238U(10-6) Th/U 比值 1σ 比值 1σ 比值 1σ 比值 1σ t(Ma) 1σ t(Ma) 1σ t(Ma) 1σ t(Ma) 1σ CD-22.1 0.063 1 0.003 3 0.241 9 0.012 5 0.027 8 0.000 6 0.008 5 0.000 3 710 75 220 10 177 4 172 5 < 1.12 28.13 1.92 3.92 231.55 242.08 0.96 CD-22.2 0.051 2 0.002 5 0.193 9 0.008 9 0.027 5 0.000 5 0.008 7 0.000 1 249 116 180 8 175 3 174 3 1.75 195.17 12.54 12.39 610.11 1 684.63 0.36 CD-22.3 0.057 2 0.001 9 0.501 0 0.016 3 0.063 6 0.001 1 0.019 6 0.000 5 498 42 412 11 397 7 392 10 < 1.21 162.13 10.07 13.94 359.81 611.61 0.59 CD-22.4 0.051 6 0.002 5 0.196 6 0.008 7 0.027 6 0.000 5 0.008 7 0.000 1 267 112 182 7 176 3 175 3 1.55 136.65 8.40 3.95 181.08 1 178.59 0.15 CD-22.5 0.054 1 0.002 7 0.204 9 0.009 7 0.027 4 0.000 5 0.008 6 0.000 1 377 116 189 8 175 3 173 3 2.51 117.48 7.65 6.01 307.37 1 022.55 0.30 CD-22.6 0.061 1 0.005 7 0.532 3 0.048 7 0.063 2 0.001 3 0.019 5 0.000 3 641 210 433 32 395 8 390 6 5.40 75.10 9.10 11.35 172.36 267.44 0.64 CD-22.7 0.050 3 0.001 7 0.192 4 0.006 5 0.027 7 0.000 5 0.008 2 0.000 2 209 46 179 6 176 3 164 5 < 0.92 122.28 6.72 4.16 258.79 1 062.08 0.24 CD-22.8 0.051 7 0.001 7 0.197 8 0.006 6 0.027 7 0.000 5 0.009 2 0.000 3 274 45 183 6 176 3 186 5 1.67 170.10 9.62 4.65 256.29 1 478.86 0.17 CD-22.9 0.050 4 0.002 5 0.191 0 0.008 6 0.027 5 0.000 5 0.008 7 0.000 1 213 114 177 7 175 3 174 3 1.85 200.33 12.20 7.73 376.77 1 746.03 0.22 CD-22.10 0.051 2 0.002 0 0.195 7 0.007 4 0.027 7 0.000 5 0.008 4 0.000 3 252 54 181 6 176 3 170 5 2.07 172.94 9.72 5.98 363.10 1 510.25 0.24 CD-22.11 0.047 9 0.001 8 0.183 5 0.006 9 0.027 8 0.000 5 0.008 2 0.000 3 93 55 171 6 177 3 164 5 < 1.43 181.74 9.54 6.23 390.86 1 582.09 0.25 CD-22.12 0.051 9 0.002 6 0.196 4 0.009 0 0.027 4 0.000 5 0.008 6 0.000 1 283 116 182 8 174 3 173 3 < 1.31 214.37 13.04 7.59 396.42 1 884.74 0.21 CD-22.13 0.049 1 0.001 9 0.206 0 0.008 0 0.030 4 0.000 6 0.008 9 0.000 3 154 56 190 7 193 4 179 6 < 1.43 211.99 11.44 8.79 507.27 1 689.70 0.30 CD-22.14.1 0.053 1 0.002 9 0.200 9 0.010 3 0.027 4 0.000 5 0.008 6 0.000 1 333 127 186 9 174 3 173 3 3.72 266.96 18.50 10.69 441.63 2 330.23 0.19 CD-22.15 0.052 0 0.006 0 0.191 1 0.021 6 0.026 7 0.000 6 0.008 4 0.000 2 284 260 178 18 170 4 169 4 8.03 275.11 25.72 32.08 1 243.65 2 332.14 0.53 CD-22.16 0.056 7 0.006 0 0.206 9 0.021 5 0.026 5 0.000 6 0.008 2 0.000 2 479 242 191 18 168 4 166 5 9.97 211.78 21.87 15.58 369.56 1 795.95 0.21 CD-22.17 0.054 5 0.006 6 0.207 4 0.024 5 0.027 6 0.000 9 0.008 2 0.000 6 392 209 191 21 176 5 165 12 < 2.83 15.11 0.94 1.38 81.72 128.43 0.64 CD-22.14.2 0.047 2 0.003 5 0.180 6 0.013 0 0.027 7 0.000 7 0.008 8 0.000 6 60 113 169 11 176 4 178 11 < 3.80 176.20 9.49 4.67 256.91 1 488.11 0.17 CD-22.2.2 0.049 5 0.003 4 0.189 1 0.012 6 0.027 7 0.000 7 0.008 3 0.000 5 173 108 176 11 176 4 166 9 2.96 243.94 13.85 14.00 821.31 2 060.96 0.40 样品ZK5404中12个分析点位于岩浆环带清楚的锆石区域,这些分析点的Th和U的含量变化范围分别为(265.43~633.62)×10-6和(829.28~1 999.39)×10-6,对应的Th/U比值为0.18~0.34;206Pb/238U年龄为176±3 Ma~175±3 Ma,加权平均结果为175.8±1.5 Ma(MSWD=0.037).该年龄代表了大宝山花岗闪长斑岩的形成年龄.分析点2.2、5.1、8.2、10和13位于继承锆石的核部.除分析点2.2具高的Th和U含量(Th:505.54×10-6,U:1 228.85×10-6)外,其他4个分析点Th和U含量分别为(62.03~121.01)×10-6和(158.29~500.58)×10-6,但它们Th/U较高(0.17~0.76),表观年龄分别为1 210±79 Ma、1 615±68 Ma、228±4 Ma、212±4 Ma和2 442±36 Ma.
样品CD-22中16个分析点位于岩浆环带清楚的锆石区域,这些分析点的Th和U的含量变化范围分别为(81.72~1 243.65)×10-6和(128.43~2 332.14)×10-6,对应的Th/U比值为0.15~0.96;206Pb/238U年龄为177±3 Ma~168±4 Ma,加权平均结果为175.0±1.7 Ma(MSWD=0.41).该年龄代表了船肚花岗闪长斑岩的形成年龄.分析点3和6位于继承锆石的核部,Th和U含量分别为359.81×10-6、172.36×10-6和611.61×10-6、267.44×10-6,对应的Th/U比值分别为0.59和0.64;206Pb/238U年龄分别为397±7 Ma和395±8 Ma.13号分析点可能打在锆石核边分界处,给出了193±4 Ma的混合年龄,无地质意义.
4. 讨论与结论
对大宝山花岗闪长斑岩的年龄,刘姤群等(1985)采用K-Ar法测定年龄为101~97 Ma,蔡锦辉和刘家齐(1993b)采用全岩Rb-Sr等时线法获得年龄为155±23 Ma.但由于K-Ar和Rb-Sr同位素体系封闭温度较低,易受后期构造-热事件影响而导致其年龄值偏低,且本区出露岩体均受到不同程度的蚀变,因此上述年龄并不可信.大宝山矿区成岩成矿年代数据的不确定性一直制约着对该矿床成岩成矿过程的研究,而且对于与钼钨成矿作用有关的船肚花岗闪长斑岩的测年工作,前人更未涉及.笔者采用LA-ICP-MS锆石U-Pb法对大宝山和船肚花岗闪长斑岩定年,结果分别为175.8±1.5 Ma(MSWD=0.037)和175.0 ±1.7 Ma(MSWD =0.41).它们在误差范围内完全一致,形成年龄约175 Ma,属于燕山早期Ⅰ阶段180~170 Ma产物. 大宝山和船肚花岗闪长斑岩测年结果的一致性,为大宝山和船肚花岗闪长斑岩原本连为一体被后期构造错断的认识提供了新证据.在钼钨成矿作用发生之后,九曲岭断裂(F2a)将原本连为一体的花岗闪长斑岩错断为目前情形,船肚岩体基本未发生位移,大宝山岩体往南滑动.断裂错动很可能将形成的矿体错断、深埋.因此,我们认为岩体错断部位是矿区Mo-W矿进一步勘探的重要方向.大宝山矿区物探资料显示(广东省大宝山矿业有限公司,2007.广东省大宝山危机矿山接替资源勘查项目续做申请书),物化探异常在大宝山矿段的北部及北东部异常并未圈闭,其北部偏左的异常正对应着断裂错开部位,目前钻孔中见矿良好的ZK4602孔就位于错断位置附近.
同时,李献华等(2007)对南岭及邻区燕山早期花岗岩的年龄统计表明,燕山早期第Ⅰ阶段(180~170 Ma)的岩浆活动规模较小,花岗闪长质小岩体仅在湘东南水口山、宝山、江华、江永地区(Wang et al., 2002)和赣东北德兴地区(王强等,2004)出现.但最近对湘东南小岩体采用锆石SHRIMP U-Pb定年表明,水口山花岗闪长岩形成年龄为163±2 Ma(MSWD=0.34)(马丽艳等,2006)、铜山岭花岗闪长岩形成年龄为149±4 Ma(MSWD=1.2)(魏道芳等,2007)、宝山花岗闪长岩形成年龄为158±2 Ma(MSWD=0.26)和161±1 Ma(MSWD=0.66)(伍光英等,2005;路远发等,2006).这些高精度的年龄数据(163~149 Ma)表明,湘东南地区的花岗闪长质小岩体并不属于燕山早期第Ⅰ阶段产物.通过大宝山和湘东南这两个例子,我们可以认为,南岭地区应还存在燕山早期第Ⅰ阶段花岗质小岩体未被高精度的同位素年代学数据揭露.
自20世纪90年代以来,众多学者先后对华南地区中生代大规模成岩成矿作用背景进行研究与讨论,目前的主导观点是中生代华南处于岩石圈拆沉或伸展减薄环境,而且认为在燕山早期便开始伸展(Chen et al., 2002;陈志刚等,2003;范蔚茗等,2003;Hua et al., 2003;谢桂青,2003;毛景文等,2004;华仁民等, 2005a, 2005b;朱金初等,2005;李献华等,2007;Li et al., 2007).谢桂青(2003)提出华南地区的岩石圈伸展主要可以归并为180~155 Ma、145~125 Ma和110~75 Ma三个阶段.范蔚茗等(2003)认为华南地区至少存在220 Ma、175 Ma、150~120 Ma、90~80 Ma四次明显的岩石圈伸展减薄事件,且175~90 Ma期间陆内岩石圈伸展减薄作用最强.已有成果表明(徐夕生等,2003;张敏等,2003;马铁球等,2006;黄会清等,2008),矿区东北侧贵东杂岩体为印支期(239~235.8 Ma)-燕山期(160~151 Ma)多次岩浆侵入的复式杂岩体,形成于晚造山至后造山的拉张环境.矿区西侧大东山岩体主体侵位于165~159 Ma,为后造山拉张环境或岩石圈伸展拉张环境下的产物.另外,彭建堂等(2008)对湘东南地区W-Sn-Mo成岩成矿时代统计结果表明,其成岩成矿时代分布范围为162~148 Ma,主要集中在160~150 Ma之间,成矿与相关花岗岩的成岩基本是同时的,或稍晚于花岗岩的成岩作用,同时认为,南岭中段花岗岩大规模的侵入和W、Sn等金属的爆发性成矿均形成于岩石圈伸展减薄-地壳拉张的构造环境.毛景文等(2004)报道的大宝山铜矿床层状矿体中单个辉钼矿Re-Os模式年龄为164.7±3 Ma,略早于162 Ma.因此,大宝山矿区的成岩成矿时代与上述岩体具有一致性或继承性.据此推测大宝山矿床成岩成矿动力学背景与上述岩体相似,为同一期岩石圈伸展-减薄事件产物.同时启示我们,在南岭地区还应存在燕山早期第一阶段(180~170 Ma)利于形成Mo-W矿的花岗岩类小岩体未被高精度测年方法所揭露.
致谢: 广东省大宝山矿业有限公司黄建华副总经理、邹卫清副总经理和刘聪主任等为本研究的野外地质工作提供了大力协助;中国地质大学地质过程与矿产资源国家重点实验室胡兆初副研究员、郑曙工程师、徐旺春博士、高长贵博士为锆石微区U-Pb同位素分析提供了指导和帮助;评审专家对论文初稿提出了宝贵修改意见,特此致谢! -
图 1 大宝山多金属矿区地质略图(葛朝华和韩发,1987;王建新,2006)
J1ln.下侏罗统兰塘群;C1dc.下石炭统大塘阶测水组;D3t.上泥盆统天子岭组;D2db.中泥盆统东岗岭组上亚组;D2da.中泥盆统东岗岭组下亚组;D1-2gt.中下泥盆统桂头群;∈.寒武系;1.矽卡岩型Mo-W矿;2.斑岩型钼钨矿带;3.褐铁矿铁帽;4.大宝山向斜;5.压性冲断裂;6.压扭性断裂;7.扭性断裂;8.地质界线;9.花岗闪长斑岩;10.次英安斑岩
Fig. 1. Sketch geological map of Dabaoshan polymetallic ore deposit
表 1 粤北大宝山多金属矿区花岗闪长斑岩(样品ZK5404)单颗粒锆石U-Pb同位素测定结果
Table 1. Results of U-Pb isotopic dating for the single-grain zircon for granodiorite porphyry sample ZK5404 at Dabaoshan ore deposit, North Guangdong
样品编号 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 204Pb(10-6) 206Pb(10-6) 207Pb(10-6) 208Pb(10-6) 232Th(10-6) 238U(10-6) Th/U 比值 1σ 比值 1σ 比值 1σ 比值 1σ t(Ma) 1σ t(Ma) 1σ t(Ma) 1σ t(Ma) 1σ ZK5404.1 0.051 0 0.001 6 0.194 8 0.005 9 0.027 7 0.000 5 0.008 3 0.000 2 240 39 181 5 176 3 167 4 < 1.67 184.53 10.18 4.76 290.97 1 588.95 0.18 ZK5404.2.1 0.050 9 0.001 6 0.194 0 0.006 0 0.027 6 0.000 5 0.008 3 0.000 2 238 41 180 5 176 3 167 4 < 1.89 168.70 9.31 5.84 357.54 1 457.70 0.25 ZK5404.2.2 0.080 5 0.003 2 1.863 9 0.065 8 0.167 9 0.002 9 0.050 2 0.000 8 1 210 79 1 068 23 1 000 16 989 15 < 1.62 910.54 83.16 54.39 505.54 1 288.85 0.39 ZK5404.3 0.054 4 0.001 7 0.207 6 0.006 5 0.027 7 0.000 5 0.008 7 0.000 2 388 40 192 5 176 3 176 4 < 1.17 197.51 11.66 10.05 583.35 1 705.71 0.34 ZK5404.4 0.052 5 0.001 6 0.201 3 0.005 9 0.027 8 0.000 5 0.008 7 0.000 2 307 37 186 5 177 3 175 4 < 2.06 205.94 11.73 9.19 535.85 1 770.03 0.30 ZK5404.5.1 0.099 5 0.003 6 3.086 1 0.096 5 0.224 9 0.003 9 0.065 7 0.001 1 1 615 68 1 429 24 1 308 20 1 286 20 < 1.26 471.05 51.98 12.22 85.60 500.58 0.17 ZK5404.5.2 0.058 4 0.001 9 0.223 1 0.007 2 0.027 7 0.000 5 0.008 2 0.000 2 544 41 204 6 176 3 164 4 < 1.91 186.23 11.84 8.39 523.33 1 611.08 0.32 ZK5404.6 0.050 7 0.002 1 0.193 6 0.007 9 0.027 7 0.000 5 0.008 6 0.000 3 225 60 180 7 176 3 173 6 < 2.22 128.54 7.10 4.48 265.43 1 112.07 0.24 ZK5404.7 0.054 2 0.002 9 0.205 6 0.010 2 0.027 5 0.000 5 0.008 6 0.000 1 381 122 190 9 175 3 173 3 1.53 230.35 15.04 12.27 633.62 1 999.39 0.32 ZK5404.8.1 0.052 1 0.002 0 0.199 5 0.007 5 0.027 8 0.000 5 0.008 3 0.000 3 291 53 185 6 176 3 167 5 < 1.70 218.92 12.49 8.21 503.68 1 897.17 0.27 ZK5404.8.2 0.050 8 0.002 6 0.252 0 0.012 5 0.036 0 0.000 7 0.009 1 0.000 4 233 78 228 10 228 4 183 8 < 1.79 41.13 2.29 1.11 62.03 275.17 0.23 ZK5404.9 0.053 7 0.002 0 0.203 2 0.007 4 0.027 5 0.000 5 0.008 7 0.000 3 357 49 188 6 175 3 175 5 1.85 180.16 10.59 7.95 465.83 1 579.51 0.29 ZK5404.10 0.052 2 0.002 5 0.240 9 0.011 3 0.033 5 0.000 7 0.011 8 0.000 4 292 71 219 9 212 4 237 9 < 1.39 56.51 3.23 2.57 111.18 406.21 0.27 ZK5404.11 0.050 6 0.002 0 0.193 4 0.007 4 0.027 7 0.000 5 0.008 4 0.000 3 224 55 180 6 176 3 170 5 < 1.47 147.67 8.22 5.65 341.81 1 285.71 0.27 ZK5404.12 0.050 0 0.002 0 0.190 7 0.007 6 0.027 7 0.000 5 0.008 4 0.000 3 195 57 177 6 176 3 168 6 < 1.34 207.77 11.43 5.83 356.19 1 813.27 0.20 ZK5404.13 0.158 7 0.005 8 6.872 4 0.247 2 0.314 1 0.005 9 0.088 4 0.002 7 2 442 36 2 095 32 1 761 29 1 713 51 < 1.64 205.92 35.96 20.98 121.01 158.29 0.76 ZK5404.14 0.051 7 0.002 9 0.195 8 0.010 5 0.027 5 0.000 5 0.008 6 0.000 1 272 132 182 9 175 3 174 3 < 1.57 163.65 10.21 7.09 358.70 1 429.96 0.25 ZK5404.15 0.055 7 0.002 2 0.544 5 0.021 4 0.070 8 0.001 3 0.020 6 0.000 7 442 54 441 14 441 8 412 13 < 1.35 243.09 14.93 20.58 510.13 829.28 0.62 表 2 粤北大宝山多金属矿区花岗闪长岩(样品CD-22)单颗粒锆石U-Pb同位素测定结果
Table 2. Results of U-Pb isotopic dating for the single-grain zircon for granodiorite sample CD-22 at Dabaoshan ore deposit, North Guangdong
样品编号 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 204Pb(10-6) 206Pb(10-6) 207Pb(10-6) 208Pb(10-6) 232Th(10-6) 238U(10-6) Th/U 比值 1σ 比值 1σ 比值 1σ 比值 1σ t(Ma) 1σ t(Ma) 1σ t(Ma) 1σ t(Ma) 1σ CD-22.1 0.063 1 0.003 3 0.241 9 0.012 5 0.027 8 0.000 6 0.008 5 0.000 3 710 75 220 10 177 4 172 5 < 1.12 28.13 1.92 3.92 231.55 242.08 0.96 CD-22.2 0.051 2 0.002 5 0.193 9 0.008 9 0.027 5 0.000 5 0.008 7 0.000 1 249 116 180 8 175 3 174 3 1.75 195.17 12.54 12.39 610.11 1 684.63 0.36 CD-22.3 0.057 2 0.001 9 0.501 0 0.016 3 0.063 6 0.001 1 0.019 6 0.000 5 498 42 412 11 397 7 392 10 < 1.21 162.13 10.07 13.94 359.81 611.61 0.59 CD-22.4 0.051 6 0.002 5 0.196 6 0.008 7 0.027 6 0.000 5 0.008 7 0.000 1 267 112 182 7 176 3 175 3 1.55 136.65 8.40 3.95 181.08 1 178.59 0.15 CD-22.5 0.054 1 0.002 7 0.204 9 0.009 7 0.027 4 0.000 5 0.008 6 0.000 1 377 116 189 8 175 3 173 3 2.51 117.48 7.65 6.01 307.37 1 022.55 0.30 CD-22.6 0.061 1 0.005 7 0.532 3 0.048 7 0.063 2 0.001 3 0.019 5 0.000 3 641 210 433 32 395 8 390 6 5.40 75.10 9.10 11.35 172.36 267.44 0.64 CD-22.7 0.050 3 0.001 7 0.192 4 0.006 5 0.027 7 0.000 5 0.008 2 0.000 2 209 46 179 6 176 3 164 5 < 0.92 122.28 6.72 4.16 258.79 1 062.08 0.24 CD-22.8 0.051 7 0.001 7 0.197 8 0.006 6 0.027 7 0.000 5 0.009 2 0.000 3 274 45 183 6 176 3 186 5 1.67 170.10 9.62 4.65 256.29 1 478.86 0.17 CD-22.9 0.050 4 0.002 5 0.191 0 0.008 6 0.027 5 0.000 5 0.008 7 0.000 1 213 114 177 7 175 3 174 3 1.85 200.33 12.20 7.73 376.77 1 746.03 0.22 CD-22.10 0.051 2 0.002 0 0.195 7 0.007 4 0.027 7 0.000 5 0.008 4 0.000 3 252 54 181 6 176 3 170 5 2.07 172.94 9.72 5.98 363.10 1 510.25 0.24 CD-22.11 0.047 9 0.001 8 0.183 5 0.006 9 0.027 8 0.000 5 0.008 2 0.000 3 93 55 171 6 177 3 164 5 < 1.43 181.74 9.54 6.23 390.86 1 582.09 0.25 CD-22.12 0.051 9 0.002 6 0.196 4 0.009 0 0.027 4 0.000 5 0.008 6 0.000 1 283 116 182 8 174 3 173 3 < 1.31 214.37 13.04 7.59 396.42 1 884.74 0.21 CD-22.13 0.049 1 0.001 9 0.206 0 0.008 0 0.030 4 0.000 6 0.008 9 0.000 3 154 56 190 7 193 4 179 6 < 1.43 211.99 11.44 8.79 507.27 1 689.70 0.30 CD-22.14.1 0.053 1 0.002 9 0.200 9 0.010 3 0.027 4 0.000 5 0.008 6 0.000 1 333 127 186 9 174 3 173 3 3.72 266.96 18.50 10.69 441.63 2 330.23 0.19 CD-22.15 0.052 0 0.006 0 0.191 1 0.021 6 0.026 7 0.000 6 0.008 4 0.000 2 284 260 178 18 170 4 169 4 8.03 275.11 25.72 32.08 1 243.65 2 332.14 0.53 CD-22.16 0.056 7 0.006 0 0.206 9 0.021 5 0.026 5 0.000 6 0.008 2 0.000 2 479 242 191 18 168 4 166 5 9.97 211.78 21.87 15.58 369.56 1 795.95 0.21 CD-22.17 0.054 5 0.006 6 0.207 4 0.024 5 0.027 6 0.000 9 0.008 2 0.000 6 392 209 191 21 176 5 165 12 < 2.83 15.11 0.94 1.38 81.72 128.43 0.64 CD-22.14.2 0.047 2 0.003 5 0.180 6 0.013 0 0.027 7 0.000 7 0.008 8 0.000 6 60 113 169 11 176 4 178 11 < 3.80 176.20 9.49 4.67 256.91 1 488.11 0.17 CD-22.2.2 0.049 5 0.003 4 0.189 1 0.012 6 0.027 7 0.000 7 0.008 3 0.000 5 173 108 176 11 176 4 166 9 2.96 243.94 13.85 14.00 821.31 2 060.96 0.40 -
[1] Andersen, T., 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79. doi: 10.1016/S0009-2541(02)00195-X [2] Cai, J.H., Liu, J.Q., 1993a. Research and its application on the inclusions characteristics in the Dabaoshan polymetallic deposit, northern Guangdong. Journal of Mineralogy and Petrology, 13(1): 33-40 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS199301005.htm [3] Cai, J.H., Liu, J.Q., 1993b. The age of the magmatic rocks of Dabaoshan polymetallic ore field in North Guangdong. Guangdong Geology, 8(2): 45-52 (in Chinese with English abstract). [4] Chen, P.R., Hua, R.M., Zhang, B.T., et al., 2002. Early Yanshanian post-orogenic granitoids in the Nanling region—petrological constraints and geodynamic setting. Science in China (Ser. D), 45(8): 755-768. doi: 10.1007/BF02878432 [5] Chen, Z.G., Li, X.H., Li, W.X., et al., 2003. SHRIMP U-Pb zircon age of the Quannan syenite, southern Jiangxi: constraints on the early Yanshanian tectonic setting of SE China. Geochimica, 32(3): 223-229 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200303002.htm [6] Crofu, F., Hanchar, J.M., Hoskin, P.W., et al., 2003. Atlas of zircon textures. Reviews Mineral Geochemistry, 53: 469-495. doi: 10.2113/0530469 [7] Fan, W.M., Wang, Y.J., Guo, F., et al., 2003. Mesozoic mafic magmatism in Hunan-Jiangxi provinces and the lithospheric extension. Earth Science Frontiers, 10(3): 159-169 (in Chinese with English abstract). http://www.researchgate.net/publication/284053740_Mesozoic_mafic_magmatism_in_Hunan-Jiangxi_provinces_and_the_lithospheric_extension [8] Ge, C.H., Han, F., 1986. Submarine volcanic hydrothermal sedimentary origin of the Dabaoshan iron and polymetallic sulfide deposit. Mineral Deposits, 5(1): 1-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ198601000.htm [9] Ge, C.H., Han, F., 1987. Submarine volcanic hydrothermal sedimentary origin and geological, geochemical characteristics of the Dabaoshan deposit in Guangdong Province. Beijing Science and Technology Publishing House, Beijing, 1-111 (in Chinese). [10] He, J.X., Xu, K.Q., Gu, L.X., 1996. Recognition of different compositional textures of metamorphism-origin pyrrhotites from Mashan and Dabaoshan deposits. Earth Science—Journal of China University of Geosciences, 21(3): 305-310 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX603.013.htm [11] He, S.P., Wang, H.L., Chen, J.L., et al., 2008. LA-ICP-MS U-Pb zircon geochronology of basic dikes within Maxianshan rock group in the central Qilian Mountains and its tectonic implications. Earth Science—Journal of China University of Geosciences, 33(1): 35-45 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.005 [12] Hua, R.M., Chen, P.R., Zhang, W.L., et al., 2003. Metallogenic systems related to Mesozoic and Cenozoic granitoids in South China. Science in China (Ser. D), 46(8): 816-829. doi: 10.1007/BF02879525 [13] Hua, R.M., Chen, P.R., Zhang, W.L., et al., 2005a. Three major metallogenic events in Mesozoic in South China. Mineral Deposits, 24(2): 99-107 (in Chinese with English abstract). [14] Hua, R.M., Chen, P.R., Zhang, W.L., et al., 2005b. Metallogeneses and their geodynamic settings related to Mesozoic granitoids in the Nanling range. Geological Journal of China Universities, 11(3): 291-304 (in Chinese with English abstract). http://www.researchgate.net/publication/284338234_Metallogeneses_and_their_geodynamic_settings_related_to_Mesozoic_granitoids_in_the_Nanling_range [15] Huang, H.Q., Li, X.H., Li, W.X., et al., 2008. Age and origin of the Dadongshan granite from the Nanling range: SHRIMP U-Pb zircon age, geochemistry and Sr-Nd-Hf isotopes. Geological Journal of China Universities, 14(3): 317-333 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-journal-china-universities_thesis/0201253566330.html [16] Huang, S.J., Zeng, Y.C., Jia, G.X., et al., 1987. On the genesis of Dabaoshan polymetallic deposit in Guangdong Province, China. Geochimica, 1: 27-35 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DQHX198701003&dbcode=CJFD&year=1987&dflag=pdfdown [17] Li, X.H., Li, W.X., Li, Z.X., 2007. Petrogenesis and tectonic implications of the early Yanshanian granites in the Nanling area, South China. Chinese Science Bulletin, 52(9): 981-991 (in Chinese). doi: 10.1360/csb2007-52-9-981 [18] Li, X.H., Li, Z.X., Li, X.W., et al., 2007. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: a major igneous event in response to foundering of a subducted flat-slab? Lithos, 96(1-2): 186-204. doi: 10.1016/j.lithos.2006.09.018 [19] Liu, G.Q., Yang, S.Y., Zhang, X.L., et al., 1985. A preliminary study on the genesis of the Dabaoshan polymetallic deposit in northern Guangdong. Acta Geologica Sinica, 1(1): 47-60 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE198501005.htm [20] Liu, X.S., Zhou, S.Z., 1985. On the occurrence of Middle Ordovician volcanics and analysis of ore-forming mechanism of siderite polymetallic ore deposit from Dabaoshan, Qujiang County, Guandong Province. Journal of Nanjing University (Natural Sciences), 21(2): 348-360 (in Chinese with English abstract). http://www.researchgate.net/publication/312980933_On_the_occurrence_of_middle_Ordovician_volcanics_and_analysis_of_ore-forming_mechanism_of_siderite_polymetallic_ore_deposit_from_Dabaoshan_Qujiang_County_Guangdong_Province [21] Lu, Y.F., Ma, L.Y., Qu, W.J., et al., 2006. U-Pb and Re-Os isotope geochronology of Baoshan Cu-Mo polymetallic ore deposit in Hunan Province. Acta Petrologica Sinica, 22(10): 2483-2492 (in Chinese with English abstract). http://www.oalib.com/paper/1471411 [22] Ludwig, K.R., 2001. Users manual for Isoplot/Ex (rev. 2.49): a geochronological tool for Microsoft Excel. Berkeley Geochronology Center, Special Publication, 55. [23] Luo, N.H., 1985. The geological and geochemical features and the origin of Dabaoshan polymetallic deposit in Guangdong Province. Journal of Guilin College of Geology, 5(2): 183-195 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GLGX198502010.htm [24] Ma, L.Y., Lu, Y.F., Mei, Y.P., et al., 2006. Zircon SHRIMP U-Pb dating of granodiorite from Shuikoushan ore-field, Hunan Province and its geological significance. Acta Petrologica Sinica, 22(10): 2475-2482 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200610007.htm [25] Ma, T.Q., Bai, D.Y., Kuang, J., et al., 2006. 40Ar-39Ar dating and geochemical characteristics of the granites in north Dadongshan pluton, Nanling mountains. Geochimica, 35(4): 333-345 (in Chinese with English abstract). http://www.researchgate.net/publication/285744377_ArAr_dating_and_geochemical_characteristics_of_the_granites_in_north_Dadongshan_pluton_Nanling_mountains4039 [26] Mao, J.W., Xie, G.Q., Li, X.F., et al., 2004. Mesozoic large scale mineralization and multiple lithospheric extension in South China. Earth Science Frontiers, 11(1): 45-55 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200401002.htm [27] Pei, T.C., Zhong, S.R., Liu, S., et al., 1994. Metallogenic series and model in Dabaoshan-Xueshanzhang area, North Guangdong Province. Contributions to Geology and Mineral Resources Research, 9(3): 48-58 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZZK403.005.htm [28] Peng, J.T., Hu, R.Z., Yuan, S.D., et al., 2008. The time ranges of granitoid emplacement and related nonferrous metallic mineralization in southern Hunan. Geological Review, 54(5): 617-625 (in Chinese with English abstract). http://www.researchgate.net/publication/284485439_The_time_ranges_of_granitoid_emplacement_and_related_nonferrous_metallic_mineralization_in_southern_Hunan [29] Song, S.M., Hu, K., Jiang, S.Y., et al., 2007. The He-Ar-Pb-S isotope tracing on ore-forming fluid in Dabao Hill polymetallic deposit, North Guangdong. Contributions to Geology and Mineral Resources Research, 22(2): 87-99 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZZK200702001.htm [30] Tang, J.F., Liu, J.Q., Fu, T.A., et al., 1992. Ore-forming conditions, the regularites of rock-and ore-control structures for the ploymetallic deposits and prediction for the concealed deposits in Dabaoshan and adjacent regions, northern Guangdong Province. In: contributions to geology and mineral resources of the Nanling area (3). Geological Publishing House, Beijing, 1-67 (in Chinese). [31] Wang, D.B., Liang, J.G., Lin, Y., 2006. A study on the genesis of the Dabaoshan Cu-Pb-Zn deposits. Dabaoshan Science & Technology, 1: 10-13 (in Chinese). [32] Wang, J.X., 2006. Geological characteristics and ore prospecting orientation of lead zinc polymetallic deposit in South Dabaoshan, Guangdong. Mineral Resources and Geology, 20(2): 142-146 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCYD200602008.htm [33] Wang, Q., Zhao, Z.H., Jian, P., et al., 2004. SHRIMP zircon geochronology and Nd-Sr isotopic geochemistry of the Dexing granodiorite porphyries. Acta Petrologica Sinica, 20(2): 315-324 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200402011.htm [34] Wang, Y.J., Fan, W.M., Guo, F., et al., 2002. U-Pb dating of Early Mesozoic granodioritic intrusions in southeastern Hunan Province, South China and its petrogenetic implications. Science in China (Ser. D), 45(3): 280-288. doi: 10.1360/02yc9031 [35] Wei, D.F., Bao, Z.Y., Fu, J.M., 2007. Geochemical characteristics and zircon SHRIMP U-Pb dating of the Tongshanling granite in Hunan Province, South China. Geotectonica et Metallogenia, 31(4): 482-489 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DGYK200704014.htm [36] Wu, G.Y., Ma, T.Q., Bai, D.Y., et al., 2005. Petrological and geochemical characteristics of granodioritic cryptoexplosion breccia and zircon SHRIMP dating in the Baoshan area, Hunan Province. Geoscience, 19 (2): 198-204 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geoscience_thesis/0201254378681.html [37] Wu, Y.B., Zheng, Y.F., 2004. Genetic mineralogy of zircon and its constraint on the interpretation of U-Pb zircon ages. Chinese Science Bulletin, 49(16): 1589-1604 (in Chinese). doi: 10.1360/csb2004-49-16-1589 [38] Wu, Y.B., Zheng, Y.F., Gong, B., et al., 2005. Zircon U-Pb ages and oxygen isotope compositions for granite at Xinkailing in the Beihuaiyang zone and their significance. Earth Science—Journal of China University of Geosciences, 30(6): 659-672 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dqkx200506003 [39] Xie, G.Q., 2003. Late Mesozoic mafic dikes (body) from southeastern China: geological and geochemical characteristics and its geodynamics—a case of Jiangxi Province (Dissertation). Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 1-128 (in Chinese with English abstract). [40] Xu, X.S., Deng, P., O'Reilly, S.Y., et al., 2003. Single zircon laser ablation ICPMS U-Pb dating of Guidong complex (SE China) and its petrogenetic significance. Chinese Science Bulletin, 48(12): 1328-1334 (in Chinese). doi: 10.1360/csb2003-48-12-1328 [41] Yuan, H.L., Gao, S., Liu, X.M., et al., 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x [42] Zhang, M., Chen, P.R., Zhang, W.L., et al., 2003. Geochemical characteristics and petrogenesis of Dadongshan granite pluton in mid Nanling range. Geochimica, 32(6): 529-539 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200306003 [43] Zhu, J.C., Xie, C.F., Zhang, P.H., et al., 2005. Niumiao and Tongan intrusive bodies of NE Guangxi: petrology, zircon SHRIMP U-Pb geochronology and geochemistry. Acta Petrologica Sinica, 21(3): 665-676 (in Chinese with English abstract). http://www.oalib.com/paper/1472629 [44] Zhuang, M.Z., 1986. The ore-forming conditions and genesis of Dabaoshan polymetallic deposit. Geology and Prospecting, 5: 27-31(in Chinese). [45] 蔡锦辉, 刘家齐, 1993a. 粤北大宝山多金属矿床矿物包裹体特征研究及应用. 矿物岩石, 13(1): 33-40. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS199301005.htm [46] 蔡锦辉, 刘家齐, 1993b. 粤北大宝山多金属矿区岩浆岩的成岩时代. 广东地质, 8(2): 45-52. [47] 陈志刚, 李献华, 李武显, 等, 2003. 赣南全南正长岩的SHRIMP锆石U-Pb年龄及其对华南燕山早期构造背景的制约. 地球化学, 32(3): 223-229. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200303002.htm [48] 范蔚茗, 王岳军, 郭峰, 等, 2003. 湘赣地区中生代镁铁质岩浆作用与岩石圈伸展. 地学前缘, 10(3): 159-169. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200303022.htm [49] 葛朝华, 韩发, 1986. 大宝山铁-多金属矿床的海相火山热液沉积成因特征. 矿床地质, 5(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ198601000.htm [50] 葛朝华, 韩发, 1987. 广东大宝山矿床喷气-沉积成因地质地球化学特征. 北京: 北京科学技术出版社, 1-111. [51] 何金祥, 徐克勤, 顾连兴, 1996. 对马山、大宝山变质成因磁黄铁矿不同组成结构的认识. 地球科学——中国地质大学学报, 21(3): 305-310. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX603.013.htm [52] 何世平, 王洪亮, 陈隽璐, 等, 2008. 中祁连马衔山岩群内基性岩墙群锆石LA-ICP-MS U-Pb年代学及其构造意义. 地球科学——中国地质大学学报, 33(1): 35-45. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200801008.htm [53] 华仁民, 陈培荣, 张文兰, 等, 2005a. 论华南地区中生代3次大规模成矿作用. 矿床地质, 24(2): 99-107. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200502001.htm [54] 华仁民, 陈培荣, 张文兰, 等, 2005b. 南岭与中生代花岗岩类有关的成矿作用及其大地构造背景. 高校地质学报, 11 (3): 291-304. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200503002.htm [55] 黄会清, 李献华, 李武显, 等, 2008. 南岭大东山花岗岩的形成时代与成因——SHRIMP锆石U-Pb年龄、元素和Sr-Nd-Hf同位素地球化学. 高校地质学报, 14(3): 317-333. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200803007.htm [56] 黄书俊, 曾永超, 贾国相, 等, 1987. 论广东大宝山多金属矿床的成因. 地球化学, 1: 27-35. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX198701003.htm [57] 李献华, 李武显, 李正祥, 2007. 再论南岭燕山早期花岗岩的成因类型与构造意义. 科学通报, 52(9): 981-991. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200709000.htm [58] 刘姤群, 杨世义, 张秀兰, 等, 1985. 粤北大宝山多金属矿床成因的初步探讨. 地质学报, 1(1): 47-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198501005.htm [59] 刘孝善, 周顺之, 1985. 广东大宝山中泥盆世火山岩与层状菱铁矿、多金属矿床成矿机制分析. 南京大学学报(自然科学版), 21(2): 348-360. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ198502015.htm [60] 路远发, 马丽艳, 屈文俊, 等, 2006. 湖南宝山铜-钼多金属矿床成岩成矿的U-Pb和Re-Os同位素定年研究. 岩石学报, 22(10): 2483-2492. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200610008.htm [61] 罗年华, 1985. 广东大宝山多金属矿床地质地球化学特征及成因探讨. 桂林冶金地质学院学报, 5(2): 183-195. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX198502010.htm [62] 马丽艳, 路远发, 梅玉萍, 等, 2006. 湖南水口山矿区花岗闪长岩中的锆石SHRIMP U-Pb定年及其地质意义. 岩石学报, 22(10): 2475-2482. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200610007.htm [63] 马铁球, 柏道远, 邝军, 等, 2006. 南岭大东山岩体北部40Ar/39Ar定年及地球化学特征. 地球化学, 35(4): 333-345. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200604002.htm [64] 毛景文, 谢桂青, 李晓峰, 等, 2004. 华南地区中生代大规模成矿作用与岩石圈多阶段伸展. 地学前缘, 11(1): 45-55. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200401002.htm [65] 裴太昌, 钟树荣, 刘胜, 等, 1994. 粤北大宝山-雪山嶂地区成矿系列及成矿模式. 地质找矿论丛, 9(3): 48-58. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK403.005.htm [66] 彭建堂, 胡瑞忠, 袁顺达, 等, 2008. 湘南中生代花岗质岩石成岩成矿的时限. 地质论评, 54(5): 617-625. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200805009.htm [67] 宋世明, 胡凯, 蒋少涌, 等, 2007. 粤北大宝山多金属矿床成矿流体的He-Ar-Pb-S同位素示踪. 地质找矿论丛, 22(2): 87-99. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK200702001.htm [68] 汤吉方, 刘家齐, 傅太安, 等, 1992. 粤北大宝山及其外围地区多金属矿床成矿条件、构造控岩控矿规律及隐伏矿床预测. 见: 中国地质科学院宜昌地质矿产研究所编, 南岭地质矿产文集(3). 北京: 地质出版社, 1-67. [69] 王殿宝, 梁继官, 林雁, 2006. 大宝山多金属矿铜铅锌矿床成因探讨. 大宝山科技, 1: 10-13. [70] 王建新, 2006. 广东大宝山南部铅-锌多金属矿床地质特征及找矿方向. 矿产与地质, 20(2): 142-146. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD200602008.htm [71] 王强, 赵振华, 简平, 等, 2004. 德兴花岗闪长斑岩SHRIMP锆石U-Pb年代学和Nd-Sr同位素地球化学. 岩石学报, 20(2): 315-324. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200402011.htm [72] 魏道芳, 鲍征宇, 付建明, 2007. 湖南铜山岭花岗岩体的地球化学特征及锆石SHRIMP定年. 大地构造与成矿学, 31(4): 482-489. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200704014.htm [73] 伍光英, 马铁球, 柏道远, 等, 2005. 湖南宝山花岗闪长质隐爆角砾岩的岩石学、地球化学特征及锆石SHRIMP定年. 现代地质, 19(2): 198-204. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200502005.htm [74] 吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416001.htm [75] 吴元保, 郑永飞, 龚冰, 等, 2005. 北淮阳新开岭地区花岗岩锆石U-Pb年龄和氧同位素组成. 地球科学——中国地质大学学报, 30(6): 659-672. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200506002.htm [76] 谢桂青, 2003. 中国东南部晚中生代以来的基性岩脉(体)的地质地球化学特征及其地球动力学意义初探——以江西省为例(博士学位论文). 贵阳: 中国科学院地球化学研究所, 1-128. [77] 徐夕生, 邓平, O′Reilly, S.Y., 等, 2003. 华南贵东杂岩体单颗粒锆石激光探针ICPMS U-Pb定年及其成岩意义. 科学通报, 48(12): 1328-1334. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200312020.htm [78] 张敏, 陈培荣, 张文兰, 等, 2003. 南岭中段大东山花岗岩体的地球化学特征和成因. 地球化学, 32(6): 529-539. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200306002.htm [79] 朱金初, 谢才富, 张佩华, 等, 2005. 桂东北牛庙闪长岩和同安石英二长岩: 岩石学、锆石SHRIMP U-Pb年代学和地球化学. 岩石学报, 21(3): 665-676. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503009.htm [80] 庄明正, 1986. 大宝山多金属矿床成矿条件及矿床成因探讨. 地质与勘探, 5: 27-31. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT198605004.htm -