• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    我国典型海洋型冰川区高海拔区输出水量变化对气候变暖的响应

    李宗省 何元庆 温煜华 庞洪喜 贾文雄 和献中 蒲焘

    李宗省, 何元庆, 温煜华, 庞洪喜, 贾文雄, 和献中, 蒲焘, 2010. 我国典型海洋型冰川区高海拔区输出水量变化对气候变暖的响应. 地球科学, 35(1): 43-50. doi: 10.3799/dqkx.2010.005
    引用本文: 李宗省, 何元庆, 温煜华, 庞洪喜, 贾文雄, 和献中, 蒲焘, 2010. 我国典型海洋型冰川区高海拔区输出水量变化对气候变暖的响应. 地球科学, 35(1): 43-50. doi: 10.3799/dqkx.2010.005
    LI Zongxing, HE Yuanqing, WEN Yuhua, PANG Hongxi, JIA Wenxiong, HE Xianzhong, PU Tao, 2010. Response of Runoff in High Altitude Area over the Typical Chinese Monsoonal Temperate Glacial Region to Climate Warming. Earth Science, 35(1): 43-50. doi: 10.3799/dqkx.2010.005
    Citation: LI Zongxing, HE Yuanqing, WEN Yuhua, PANG Hongxi, JIA Wenxiong, HE Xianzhong, PU Tao, 2010. Response of Runoff in High Altitude Area over the Typical Chinese Monsoonal Temperate Glacial Region to Climate Warming. Earth Science, 35(1): 43-50. doi: 10.3799/dqkx.2010.005

    我国典型海洋型冰川区高海拔区输出水量变化对气候变暖的响应

    doi: 10.3799/dqkx.2010.005
    基金项目: 

    中国科学院“西部之光”人才培养计划“西部博士资助项目” O828A11001

    国家重点基础研究发展计划 2007CB411501

    中国科学院重要方向性项目 KZCXZ-YW-317

    国家自然科学基金项目 40971019

    国家自然科学基金项目 90511007

    国家自然科学基金项目 J0630966

    国家自然科学基金项目 40801028

    详细信息
      作者简介:

      李宗省(1984-),男,博士研究生,主要从事环境演化与全球变化研究.E-mail: lizxhhs@163.com

    • 中图分类号: P54;X141

    Response of Runoff in High Altitude Area over the Typical Chinese Monsoonal Temperate Glacial Region to Climate Warming

    • 摘要: 通过丽江盆地气象水文观测资料研究发现: 冰雪消融加剧、融水增加, 漾弓江流域径流量明显上升; 高海拔冰雪区消融期提前, 春季径流增加明显; 高海拔冰雪区的径流输出对漾弓江流域水量平衡的贡献量逐年增加, 体现了全球气候变暖背景下高海拔冰雪区对整个流域水循环的重要性.对海螺沟流域实测气象水文资料的分析也表明, 气候变暖背景下, 该流域冰雪区水量输出也逐年上升.两流域高海拔区输出水量的剧烈增加, 明显响应了气候变暖, 表明了流域水循环的加速, 这必然将对区域的发展和资源开发产生重要影响.

       

    • 图  1  研究区位置

      Fig.  1.  Lo cation of the study area

      图  2  1979—2003年丽江年降水量(a);木家桥水文站年平均流量(b);1979—2003年木家桥年最小流量变化(c)(图中的直线为线性趋势线)

      Fig.  2.  Annual total precipitation variation during 1979-2003 years in Lijiang (a); Annual average discharge variation during 1979-2003 years in Yanggongjian basin (b); Annual minimum discharge variation during 1979-2003 years in Yanggongjian basin (c)

      图  3  升温后期(1994—2003年)相对于升温前期(1979—1988年)木家桥各月流量增加百分比(a);升温前期(1979—1988年)和升温后期(1994—2003年)木家桥平均流量的季节变化(b)

      Fig.  3.  Increased percent of monthly discharge between 1994-2003 years and 1979-1998 years (a); the seasonal variation of monthly average discharge between 1994-2003 years and 1979-1998 years (b)

      图  4  1979—2003年漾弓江高海拔冰雪区输出水量变化

      Fig.  4.  Annual output discharge variation during 1979-2003 years in snow-glacier covered area of Yanggongjiang basin

      图  5  1999—2004年海螺沟流域流量变化(a)、气温(b)、降水量(c)和蒸发量的变化(d)

      Fig.  5.  Variation of discharge (a), temperature (b), precipitation (c) and evaporation (d) during 1999-2004 years in Hailuogou basin

      图  6  1999—2004年海螺沟流域冰川区输出水量变化

      Fig.  6.  Annual output discharge variation during 1999-2004 years in snow-glacier covered area of Hailuogou basin

      表  1  升温前期10年(1979—1988年)和升温后期10年(1994—2003年)平均丽江降水量、木家桥径流量和PGlacier值以及升温后期这些变量相对于升温前期增加的百分比

      Table  1.   Increased percent of precipitation, discharge and PGlacier between 1994-2003 years and 1979-1998 years

      丽江平均降水量(mm) 木家桥年平均径流量(mm) 平均PGlacier(mm)
      1979—1988年 908 300 110
      1994—2003年 1 045 536 210
      增加百分比(%) 15.1 78.7 90.9
      下载: 导出CSV
    • [1] Bultot, F., 1988. Repercussions of a CO2 doubling on the water cycle and the water balance—a case study for Belgium. Journal of Hydrology, 99: 319-347. doi: 10.1016/0022-1694(88)90057-1
      [2] Chapman, W.L., Walsh, J.E., 1993. Recent variations of sea ice and air temperature in high latitudes. Bulletin of the American Meteorological Society, 74(1): 33-48. doi: 10.1025/3222-1694BAMS057
      [3] China Meteorological Administration, 2006. Climate and environment in China. Science Press, Beijing (in Chinese).
      [4] Chiew, F.H.S., McMahon, T., 1994. Application of the daily rainfall-runoff model MODHYDROLOG to 28 Australian catchments. Journal of Hydrology, 153(1-4): 386-416. doi: 10.1016/0022-1694(94)90200-3
      [5] Duan, Q.F., Zhang, K.X., Wang, J.X. et al., 2007. Sporopollen assemblage from the Totohe Formation and its stratigraphic significance in the Tanggula Mountains, northern Tibet. Earth Sciences—Journal of China University of Geosciences, 32(5): 629-637 (in Chinese with English Abstract). http://www.researchgate.net/publication/279908448_Sporopollen_assemblage_from_the_Totohe_Formation_and_its_stratigraphic_significance_in_the_Tanggula_Mountains_northern_Tibet
      [6] Dyurgerov, M.B., 2003. Mountain and subpolar glaciers show an increase in sensitivity to climate warming and intensification of the water cycle. Journal of Hydrology, 282(1-4): 164-176. doi: 10.1016/S0022-1694(03)00254-3
      [7] Dyurgerov, M.B., Meier, M.F., 2000. Twentieth century climate change: evidence from small glaciers. Proceedings of National Academy of Sciences, 97(4), 1406-1411. doi: 10.1038/PNASS097-4
      [8] He, Y.Q., Li, Z.X., Yang, X.M., et al., 2008. Changes of the Hailuogou Glacier, Mt. Gongga, China, against the background of global warming in the last several decades. Journal of China University of Geosciences, 19(3): 271-281. doi: 10.1016/S1002-0705(08)60045-X
      [9] He, Y.Q., Zhang, D., 2004. Climatic warming is the major reason for glacier retreat on Mt. Yulong, China. Journal of Glaciology and Geocryolog, 26(2): 230-231 (in Chinese with English Abstract). http://www.cqvip.com/QK/93756X/20042/9519598.html
      [10] He, Y.Q., Zhang, Z.L., Theakstone, W.H., et al., 2003. Changing features of climate and glaciers in China s monsoonal temperate glacier region. Journal of Geophysical Research, 108(D17): 4530-4536. doi: 10.1029/2002JD003305
      [11] Higuchi, K., Ohata, Y., 1996. Specific features of snow and ice regime under the conditions of Central Asia. In: Kotlyakov, V.M. ed., Variations of snow and ice in the past and present on a global and regional scale, 45-51.
      [12] Li, Z.X., He, Y.Q., Jia, W.X., et al, 2008a. Response of the "glaciers-runoff" system in a typical temperate-glacier, Hailuogou glacier in Mt. Gongga of China to global change. Scientia Geographica Sinica, 28(2): 229-234 (in Chinese with English Abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLKX200802018.htm
      [13] Li, Z.X., He, Y.Q., Yang, X.M., et al., 2008b. Changes of the Hailuogou glacier, Mt. Gongga, China, against the background of climate change since the Holocene. Quaternary International. doi: 10.1016/j.quaint.2008.09.005
      [14] Meier, M.F., 1984. Contribution of small glaciers to global sea level. Science, 226(4681): 1418-1421. doi: 10.1126/science.226.4681.1418
      [15] Miller, B.A., Brock, W.G., 1989. Potential impacts of climate change on the TVA reservoir system. In: Smith, J.B., Tirpak, D., eds., The potential effects of global climate change on the U.S., Appendix A: water resources. U.S. EPA, Washington, D.C., 91-94.
      [16] Pu, J.C., 1994. Glacier inventory of China (the Changjiang river drainage basin). Gansu Culture Press, Lanzhou, 117-129 (in Chinese).
      [17] Serreze, M.C., Walsh, J.E., Chapin, F.S., et al., 2000. Observational evidence of recent change in the northern high-latitude environment. Climate Change, 46(1-2): 159-207. doi: 10.104457CC/46-1694-159
      [18] Shi, Y.F., 2001. Estimation of the water resources affected by climatic warming and glacier shrinkage before 2050 in west China. Journal of Glaciology and Geocryology, 23(4): 333-341 (in Chinese with English Abstract). http://www.researchgate.net/publication/284332700_Estimation_of_the_water_resources_affected_by_climatic_warming_and_glacier_shrinkage_before_2050_in_west_China
      [19] Shi, Y.F., Huang, M.H., He, Y.Q., et al., 2007. Glaciers and the related Environments in China. Science Press, Beijing.
      [20] Singh, P., Kumar, N., 1999. Impact assessment of climate change on the hydrological response of a snow and glacier melt runoff dominated Himalayan river. Journal of Hydrology, 193(1-4): 316-350. doi: 10.1016/0022-1694(99)90193-3
      [21] The Report of IPCC, 2007. Climate change 2007: the physical science basis. Report of working group Ⅱ of the intergovernmental panel on climate change. Cambridge University Press, Cambridge.
      [22] Yang, Z.S., Xie, Y.Q., Yang, S.W., 1994. The application of E/E0 in division of dry-wet region and dry-wet climate on Yunnan Province. Journal of Yunnan University (Natural Science), 16(Suppl. ): 91-98 (in Chinese with English Abstract).
      [23] Ye, Q.H., Yao, T.D., Chen, F., et al., 2008. Response of glacier and lake covariations to climate change in Mapam Yumco basin on Tibetan plateau. Journal of China University of Geosciences, 19(2): 135-145. doi: 10.1016/S1002-0705(08)60032-1
      [24] Zuo, Z., Oerlemans, J., 1997. Contribution of glacier melt to sea-level rise since AD 1865: a regionally differentiated calculation. Climate Dynamics, 13(12): 835-845. doi: 10.105923/41157-1312CD
      [25] 段其发, 张克信, 王建雄, 等, 2007. 藏北唐古拉山地区沱沱河组孢粉组合及其地层意义. 地球科学——中国地质大学学报, 32(5): 629-637. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200705008.htm
      [26] 何元庆, 章典, 2004. 气候变暖是玉龙雪山冰川退缩的主要原因. 冰川冻土, 26(2): 230-231. doi: 10.3969/j.issn.1000-0240.2004.02.020
      [27] 李宗省, 何元庆, 贾文雄, 等, 2008a. 中国典型季风海洋型冰川区"冰川-径流"系统的全球变化敏感性研究. 地理科学, 28(2): 229-234. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX200802018.htm
      [28] 蒲健辰, 1994. 中国冰川目录(长江水系). 兰州: 甘肃文化出版社, 117-129.
      [29] 施雅风, 2001.2050年前气候变暖冰川萎缩对水资源影响情景预估. 冰川冻土, 23(4): 333-341. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200104000.htm
      [30] 杨子生, 谢应齐, 杨绍武, 1994. 蒸发比(E/E0)指标在云南省干湿气候区划与干湿气候分类中的应用. 云南大学学报(自然科学版), 16(增刊): 91-98. https://www.cnki.com.cn/Article/CJFDTOTAL-YNDZ4S1.016.htm
      [31] 中国气象局, 2006. 中国气候与环境演变. 北京: 科学出版社.
    • 加载中
    图(6) / 表(1)
    计量
    • 文章访问数:  2750
    • HTML全文浏览量:  159
    • PDF下载量:  75
    • 被引次数: 0
    出版历程
    • 收稿日期:  2009-05-20
    • 刊出日期:  2010-01-01

    目录

      /

      返回文章
      返回