Thermal Property of the Apatite Pseudomorphic Turquoise
-
摘要: 绿松石的热性能分析在对其水的结构特征、呈色机理等的研究中具有重要指示作用.采用热重-差热分析(TG-DSC)、红外光谱(IR)和X-射线粉晶衍射(XRD) 分析方法, 对安徽马鞍山具磷灰石假象绿松石的热性能特征进行了研究.研究结果显示从室温到1100℃, 假象绿松石的热相变可划分为6个变化阶段: 100~200℃时, 为吸附水脱水阶段; 250~330℃, 假象绿松石中羟基和晶格水分子脱失; 330~750℃为非晶态物相阶段; 约750℃时为新物相形成阶段; 750~1100℃为具磷石英结构磷酸铝的形成阶段; 1100℃时磷酸铝的结晶有序度增加.假象绿松石结构及水的存在形式、总量和结合方式制约和影响着颜色的变化.Abstract: The study of the apatite pseudomorphic turquoise's thermal property plays a significant role in the investigation of the coloring mechanism and the structural characteristics of water in turquoise.In this paper, thermal property of the apatite pseudomorphic turquoise from Maanshan, Anhui Province, has been studied by using the thermogravimetric and thermal analysis (TG-DSC), infrared (IR) spectrum and X-ray powder (XRD) diffraction.From room temperature to 1 100 ℃, its thermal phase transformation can be divided into six stages: 100-200 ℃, the removal of the absorption water; 250-330 ℃, the release of the hydroxyl and lattice water; 330-750 ℃, the formation of non-crystalline structure; about 750 ℃, a new phase formed; 750-1 100 ℃, the generation of aluminum phosphate with tridymite structure, and 1 100 ℃, the degree of crystalline order of aluminum phosphate is improved.The color of pseudomorphic turquoise is controlled by the structure, the existence form and total amount of water, together with the binding mode of water molecules.
-
Key words:
- apatite pseudomorphic turquoise /
- aluminum phosphate /
- thermal property
-
表 1 大王山矿区绿松石的宝石学特征
Table 1. Gemmology Features of turquoises in Dawangshan area
-
[1] Chen, Q. L., Qi, L. J., 2007. Study on the vibrational spectrac haracters of water in turquoise from Maanshan. J. Mineral. Petrol. , 27 (1): 30-35 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS200701005.htm [2] Jiang, Z. C., Chen, D. M., Wang, F. Y., et al., 1983. Thermal properties and its mineral symbiotic of turquoise of Hubei and Shaanxi areas. Acta Mineralogica Sinica, 3: 198-203 (in Chinese with English abstract). [3] Kolitsch, U., Giester, G., 2000. The crystal structure of faustite and its copper analogue turquoise. Mineralogical Magazine, 64 (5): 905-913. doi: 10.1180/002646100549733 [4] Li, X. A., Wang, F. Y., Zhang, H. F., 1984. Structural characteristics of water in turquoise. Acta Mineralogical Sinica, 1: 78-81 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB198401015.htm [5] Qi, L. J., Yan, W. X., Yang, M. X., 1998. Turquoise from Hubei Province, China. The Journal of Gemmology, 26 (1): 1-12. doi: 10.15506/JoG.1998.26.1.1 [6] Ray, L., Frost, B., Jagannadha, R., et al., 2006. The molecular structure of the phosphate mineral turquoise—A raman spectroscopic study. Journal of Molecular Structure, 788: 224-331. doi: 10.1016/j.molstruc.2005.12.003 [7] Reddy, B. J., Frost, R. L., Weier, M. L., et al., 2006. Ultraviolet-visible, near infrared and mid infrared reflectance spectroscopy of turquoise. Journal of Near Infrared Spectroscopy, 14 (4): 241-250. doi: 10.1255/jnirs.641 [8] Yang, X. Y., Wang, K. R., Liu, X. H., 1997. Rare earth element geochemistry of the different types of turquoise from Maanshan area. Rare Earth, 18 (4): 1-3 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XTZZ704.000.htm [9] Yang, X. Y., Zheng, Y. F., Yang, X. M., et al., 2003. Mineralogical and geochemical studies on the different types of turquoise from Maanshan area, East China. NeuesJahrbuch Fur Mineralogie-Monatshefte, 3: 97-112. [10] Yue, D. Y., 1995. A study of pseudomorphous turquoise from Maanshan area, Auhui Province. Acta Petrologicaet Mineralogica, 14 (1): 79-83 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW501.010.htm [11] Zhang, H. F., Lin, C. Y., Ma, Z. W., et al., 1982. Magnetic properties, characteristic spectra and colour of turquoise. Acta Mineralogica Sinica, 3 (4): 254-261 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB198204003.htm [12] 陈全莉, 亓利剑, 2007. 马鞍山绿松石中水的振动光谱表征及其意义. 矿物岩石, 27 (1): 30-35. doi: 10.3969/j.issn.1001-6872.2007.01.006 [13] 姜泽春, 陈大梅, 王辅亚, 等, 1983. 湖北、陕西一带绿松石的热性能及其共生矿物. 矿物学报, 3: 198-203. doi: 10.3321/j.issn:1000-4734.1983.03.006 [14] 李新安, 王辅亚, 张慧芬, 1984. 绿松石中水的结构特征. 矿物学报, 1: 78-81. doi: 10.3321/j.issn:1000-4734.1984.01.014 [15] 杨晓勇, 王奎仁, 刘向华, 1997. 马鞍山地区不同类型绿松石稀土元素地球化学研究. 稀土, 18 (4): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ704.000.htm [16] 岳德银, 1995. 安徽马鞍山地区假象绿松石的研究. 岩石矿物学杂志, 14 (1): 79-83. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW501.010.htm [17] 张慧芬, 林传易, 马中玮, 等, 1982. 绿松石的某些磁性、光谱特性和颜色的研究. 矿物学报, 3 (4): 254-261. doi: 10.3321/j.issn:1000-4734.1982.04.003