• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    非均质介质中地下水流动与溶质运移模拟——问题与挑战

    TsangChin-Fu

    TsangChin-Fu, 2000. 非均质介质中地下水流动与溶质运移模拟——问题与挑战. 地球科学, 25(5): 443-450.
    引用本文: TsangChin-Fu, 2000. 非均质介质中地下水流动与溶质运移模拟——问题与挑战. 地球科学, 25(5): 443-450.
    Tsang Chin-Fu, 2000. MODELING GROUNDWATER FLOW AND MASS TRANSPORT IN HETEROGENEOUS MEDIA: ISSUES AND CHALLENGES. Earth Science, 25(5): 443-450.
    Citation: Tsang Chin-Fu, 2000. MODELING GROUNDWATER FLOW AND MASS TRANSPORT IN HETEROGENEOUS MEDIA: ISSUES AND CHALLENGES. Earth Science, 25(5): 443-450.

    非均质介质中地下水流动与溶质运移模拟——问题与挑战

    基金项目: 

    美国能源部项目 DE-AC03-76SF00098

    详细信息
      作者简介:

      TsangChin-Fu:Chin-Fu Tsang, 男, 研究员, 1969年获美国加州大学博士学位, 现任美国Lawrence Berkeley国家实验室地球科学部主任, 主要从事核废物地质处置、地下水流和溶质运移数值模拟研究

    • 中图分类号: P641.2

    MODELING GROUNDWATER FLOW AND MASS TRANSPORT IN HETEROGENEOUS MEDIA: ISSUES AND CHALLENGES

    • 摘要: 对大空间尺度和长时间跨度的地下水流动及污染物质运移进行预测的需求, 使水文地质研究面临异乎寻常的挑战.这些需求来自于对核废料地质储放方法的安全性评价、地下水污染状况评价及其治理方案的选择.流动系统的非均质性是地下水流动及物质运移模拟中最主要的困难之一, 这种困难来自对非均质系统进行特征描述(通过原位观测实现)、概念化及模拟.评述了非均质介质中流动运移模拟的一些重要问题与挑战, 讨论了解决的途径.讨论的主题包括: 动力流动的沟道化, 示踪剂穿透曲线, 裂隙岩石中流体流动的多尺度, 观测的不同尺度, 模拟、预测与非均质性以及系统特征描述和预测性模拟的分析.

       

    • 图  1  二维非均质介质中流动沟道化随σ的变化

      Fig.  1.  Emergence of flow channeling, under pressure step applied from the top to the bottom boundary, as a function of σ for a 2D heterogeneous medium

      a.λ′=0.15, σ=0.5;b.λ′=0.15, σ=2.0;c.λ′=0.15, σ=6.0

      图  2  二维非均质介质中流动沟道化随λ′的变化

      Fig.  2.  Emergence of flow channeling, under pressure step applied from the top to the bottom boundary, as a function of λ′ for a 2D heterogeneous medium

      a.λ′=0.015, σ=2.0;b.λ′=0.15, σ=2.0;c.λ′=0.3, σ=2.0

      图  3  不同标准偏差σ值和相关长度与路程长度比λ′为0.075 (a), 0.30 (b) 对应的穿透曲线

      图  4  裂隙岩石中流动和运移的多步骤弥散度

      图  5  隙宽变化的裂隙网络中示踪剂穿透曲线(裂隙间距在4~8 m范围变化)

      Fig.  5.  Tracer breakthrough curves for a fracture network with variable apertures for each fracture

      图  6  预测性模拟中不同尺度的图示

    • [1] Alumbaugh D L, Newman G A. Three-dimensional massively parallel electromagnetic inversion: Ⅱ. analysis of a cross-well experiment[J]. Geophys J In, 1997, 128: 355~363. doi: 10.1111/j.1365-246X.1997.tb01560.x
      [2] Hyndman D W, Harris J M, Gorelick S M. Coupled seismic and tracer test inversion for aquifer property characterization[J]. Water Resour Res, 1994, 30(7): 1965~1977. doi: 10.1029/94WR00950
      [3] Karasaki K, Freifeld B, Cohen A, et al. A multidisciplinary fractured rock characterization study at Raymond Field Site, Raymond, California[J]. Journal of Hydrology, 2000(accepted for publication).
      [4] Lee D S, Stevenson V M, Johnston P F, et al. Timelapse crosswell seismic tomography to characterize flow structure in the reservoir during the thermal stimulation [J]. Geophysics, 1995, 60(3): 660~666. doi: 10.1190/1.1443805
      [5] Nekut A G. Electromagnetic ray-trace tomography[J]. Geophysics, 1994, 55: 371~377.
      [6] Rector J W. Crosswell methods[J]. Geophysics, 1995, 60: 627~920.
      [7] Rubin Y, Gomez-Hernandez J J. A stochastic approach to the problem of upscaling of conductivity in disordered media: theory and unconductional numerical simulations [J]. Water Resour Res, 1990, 26(4): 691~701. doi: 10.1029/WR026i004p00691
      [8] Smith T, Hoversten M, Gasperikova E, et al. Sharp boundary inversion of 2D magnetotelluric data[J]. Geophysical Prospecting, 1999, 47: 469~486. doi: 10.1046/j.1365-2478.1999.00145.x
      [9] Tichelaar B W, Hatchell P J. Inversion of 4-C borehole flexural waves to determine anisotropy in a fractured carbonate reservoir[J]. Geophysics, 1997, 62(5): 1432~1441. doi: 10.1190/1.1444247
      [10] Vasco D W, Peterson J E, Lee K H. Ground-penetrating radar velocity tomography in heterogeneous and anisotropic media[J]. Geophysics, 1997, 62(6): 1758 ~1773. doi: 10.1190/1.1444276
      [11] Vasco D W, Karasaki K K, Myer L. Monitoring of fluid injection and soil consolidation using surface tilt measurements[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(1): 29~37. doi: 10.1061/(ASCE)1090-0241(1998)124:1(29)
      [12] Walsh J J. Fracture estimation from parametric inversion of SV waves in multicomponent offset VSP data [A]. In: Society of Exploration Geophysicists, ed. Expanded abstracts with biographies, technical program: 63rd Annual Meeting and International Exhibition, Tulsa, OK[C][s. l. ]: [s. n. ], 1993. 140~142.
      [13] Wilt M J, Alumbaugh D L, Morrison H F, et al. Crosswell electromagnetic tomography, system design considerations and field result[J]. Geophysics, 1995, 60(3): 871~885. doi: 10.1190/1.1443823
      [14] Dagan G. Solute transport in heterogeneous porous formations[J]. J Fluid Mech, 1984, 145: 141~177.
      [15] Dagan G. Statistical theory of groundwater flow and transport: pore to laboratory, laboratory to formation, and formation to regional scale[J]. Water Resour Res, 1986, 22(9): 120S~134S.
      [16] Dagan G. Transport in heterogeneous porous formations: spatial moments, ergodicity, and effective dispersion[J]. Water Resour Res, 1990, 26(6): 1281~1290. doi: 10.1029/WR026i006p01281
      [17] Gelhar L W. Stochastic subsurface hydrology from theory to applications[J]. Water Resour Res, 1986, 22 (9): 135S~145S.
      [18] Gelhar L W, Axness C L. Three-dimensional stochastic analysis of macrodispersion in aquifers[J]. Water Resour Res, 1983, 19(1): 161~180. doi: 10.1029/WR019i001p00161
      [19] Neuman S P, Winter C L, Newman C M. Stochastic theory of field-scale dispersion in anisotropic porous media[J]. Water Resour Res, 1987, 23(3): 453~466. doi: 10.1029/WR023i003p00453
      [20] Neuman S P, Orr S, Levin O, et al. Theory and highresolution finite element analysis of 2D and 3D effective permeability in strongly heterogeneous porous media [A]. In: Russell T F, et al. eds. Mathematical modeling in water resources, Vol. 2[C]. New York: Elsevier, 1992. 118~136.
      [21] Rubin Y. Stochastic modeling of macrodispersion in heterogeneous porous media[J]. Water Resour Res, 1990, 26(1): 133~141. doi: 10.1029/WR026i001p00133
      [22] Javandel I, Doughty C, Tsang C F. Groundwater transport, water resources monograph 10[M]. Washington D C: American Geophysical Union, 1984.
      [23] Birkh9 lzer J, Tsang C F. Solute channeling in unsaturated heterogeneous porous media[J]. Water Resour Res, 1997, 33(10): 2221~2238. doi: 10.1029/97WR01209
      [24] Moreno L, Tsang C F. Flow channeling in strongly heterogeneous porous media: a numerical study[J]. Water Resour Res, 1994, 30(5): 1421~1430. doi: 10.1029/93WR02978
      [25] Tsang Y W, Tsang C F. Channel model of flow through fractured media[J]. Water Resour Res, 1987, 23(3): 467~479. doi: 10.1029/WR023i003p00467
      [26] Tsang C F, Moreno L, Tsang Y, et al. Dynamic channeling of flow and transport in saturated and unsaturated heterogeneous media[A]. In: Nicholson T, ed. Geophysical Monograph 42[C]. [s. l. ]: [s. n. ], 2000.
      [27] deMarsily G. Quantitative hydrogeology[M]. Orlando, Florida: Academic Press, 1986.
      [28] Tsang C F, Neretnieks I. Flow channeling in heterogeneous fractured rocks[J]. Reviews of Geophysics, 1998, 36(2): 275~298. doi: 10.1029/97RG03319
      [29] Nordqvist A W, Tsang Y W, Tsang C F, et al. Effects of high variance of fracture transmissivity on transport and sorption at different scales in a discrete model for fractured rocks[J]. J of Contaminant Hydrology, 1996, 22(1~2): 39~66. doi: 10.1016/0169-7722(95)00064-X
      [30] Dagan C. Higher-order correction of effective conductivity of heterogeneous formations of lognormal conductivity distribution[J]. Transp Porous Media, 1993, 12: 279 ~290. doi: 10.1007/BF00624462
      [31] Desbarats A J. Spatial averaging of the transmissivity in heterogeneous fields with flow toward well[J]. Water Resour Res, 1992, 28(3): 757~767. doi: 10.1029/91WR03099
      [32] Desbarats A J. Spatial averaging of the hydraulic conductivity in three-dimension heterogeneous porous media [J]. Mathl Geol, 1992, 24(3): 249~267. doi: 10.1007/BF00893749
      [33] Desbarats A J. Geostatistical analysis of aquifer heterogeneity from the core scale to the basin scale: a case study[J]. Water Resour Res, 1994, 30(3): 673~684. doi: 10.1029/93WR02980
      [34] Dykaar B B, Kitanidis P K. Transmissivity of heterogeneous formation[J]. Water Resour Res, 1993, 29(4): 985~1001. doi: 10.1029/93WR00004
      [35] Indelman P, Fiori A, Dagan G. Steady flow toward wells in heterogeneous formation: mean head and equivalent conductivity[J]. Water Resour Res, 1996, 32 (7): 1975~1983. doi: 10.1029/96WR00990
      [36] Paleologos E K, Neuman S P, Tartakovsky D. Effective hydraulic conductivity of bounded, strongly heterogeneous porous media[J]. Water Resour Res, 1996, 32 (5): 1333~1342. doi: 10.1029/95WR02712
      [37] Tsang C F, Gelhar L, de Marsily G, et al. Solute transport in heterogeneous media: a discussion of technical issues coupling site characterization and predictive assessment[J]. Adv in Water Res, 1994, 17(4): 259~264. doi: 10.1016/0309-1708(94)90005-1
    • 加载中
    图(6)
    计量
    • 文章访问数:  3703
    • HTML全文浏览量:  133
    • PDF下载量:  4
    • 被引次数: 0
    出版历程
    • 收稿日期:  2000-06-20
    • 刊出日期:  2000-09-25

    目录

      /

      返回文章
      返回