FRACTAL ANALYSIS OF HUANGLASHI AND HUANGTUPO LANDSLIDES IN THREE GORGES, CHANGJIANG RIVER, CHINA
-
摘要: 为了探索复杂滑坡轨迹结构演化及其稳定性定量分析计算的新途径, 利用分形分维理论, 分析三峡库首区黄腊石滑坡和黄土坡滑坡边界轨迹的几何分形结构, 并采用盒维数法分别求得黄腊石滑坡西部活动性滑坡群、东部小滑坡群和整个滑坡系统及黄土坡滑坡分形结构的特征性斜率曲线和分维值.计算结果表明: 每个滑坡群的轨迹结构具有其特征性的分维值, 轨迹结构越复杂, 结构层次越清楚, 分维值越高.其中, 黄腊石滑坡西部活动性滑坡群的分维值最高, D =1.483, 黄土坡滑坡的分维值最低, D =1.111.主要结论包括: (1) 滑坡边界轨迹存在统计上的自相似性, 具有分形结构特征; (2) 滑坡轨迹结构的宏观扩展变形过程是一个增维过程, 而不是降维过程; (3) 滑坡轨迹结构越复杂, 有序性越好, 分维值越高, 其稳定性越差; 因此, 分数维可作为衡量滑坡轨迹结构复杂性和稳定性的重要标志.Abstract: In order to discover a new approach to the quantitative analysis of the evolution and stability of the complex landslide trace pattern, the fractal theory is employed to analyze the geometrical fractal pattern of the self-similar boundary trace between the Huanglashi landslide and the Huangtupo landslide in the fore-reservoir region of the Three Gorges, Changjiang River. In addition, the box dimension method is employed to obtain the characteristic slope curves and fractal values for the corresponding fractal patterns of the active landslide cluster in the west of the Huanglashi landslide, the small landslide cluster in the east of the Huanglashi landslide, the whole landslide system of the Huanglashi landslide, and the Huangtupo landslide respectively. The computation results show that the trace pattern of each landslide cluster is characterized by its characteristic fractal value. The more complex the trace pattern, the clearer the structure layers, and the higher the fractal value. In particular, the highest fractal value is D =1.483 located in the active landslide cluster in the west of the Huanglashi landslide, and the lowest fractal value D =1.111 located in the Huangtupo landslide. The fractal analysis of the Huangtupo landslide and the Huanglashi landslide provides us with the following major conclusions: (1) The statistical self-similarity and the fractal structure are both present in the boundary trace between the landslides. (2) The macro-extension deformation process of the landslide trace pattern is characterized by the increase in the dimension instead of the decrease in the dimension. (3) The more complex the landslide trace pattern, the better the sequential order, the higher the fractal value, and the poorer the stability of the corresponding landslide. Therefore, the fractal dimension may serve as a statistical assessment criterion for the analysis of the complexity and stability of the landslide trace pattern.
-
Key words:
- Huanglashi landslide /
- Huangtupo landslide /
- landslide trace pattern /
- fractal dimension
-
表 1 黄土坡滑坡边界轨迹测量数据
Table 1. Measurement data of the boundary trace pattern of the Huangtupo landslide
-
[1] 黄润秋, 许强. 工程地质广义系统科学分析原理及应用[M ]. 北京: 地质出版社, 1997.61~124. [2] 秦四清, 张倬元, 王士天, 等. 非线性工程地质学导引[M ]. 成都: 西南交通大学出版社, 1993.5~30. [3] 易顺民, 唐辉明. 活动断裂的分形结构特征[J]. 地球科学———中国地质大学学报, 1995, 2 0 (1): 5 8~6 2. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX501.008.htm [4] Cello G. Fractal analyses of a Quaternary fault array in the central Apennines, Italy[ J]. Journal of Structural Geolo-gy, 1997, 19(7): 945~ 953. doi: 10.1016/S0191-8141(97)00024-2 [5] 易顺民, 晏同珍. 滑坡定量预测的非线性方法[J]. 地学前缘, 1996, (1): 77~85. doi: 10.3321/j.issn:1005-2321.1996.01.009 [6] 周萃英, 汤连生, 晏同珍. 滑坡灾害系统的自组织[J]. 地球科学———中国地质大学学报, 1996, 2 1 (6): 604~607. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX606.012.htm [7] 李玉生, 钟荫乾. 长江三峡工程库区大型滑坡崩塌[M ]. 广州: 广东旅游出版社, 1993. [8] 崔政权. 巴东县城区主要地质问题暨紧急防治对策[A]. 见: 何满潮, 蒋宇静编. 三峡库区地质环境暨第二届中日地层环境力学国际学术讨论会论文集[C]. 北京: 煤炭工业出版社, 1997.15~22. [9] 吴树仁, 晏同珍, 吴光. 长江三峡黄腊石滑坡缓倾角断裂显微构造研究[J]. 水文地质工程地质, 1993, (2): 27~31. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG199302007.htm [10] 谢和平. 分形—岩石力学导论[M ]. 北京: 科学出版社, 1996. [11] 晏同珍. 滑坡构造力学某些特征分析[J]. 地球科学———武汉地质学院学报, 1981, (2): 223~239. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX198102015.htm [12] Babaie H A, Hadizadeh J, Babaei A. Self_similar cata- clasare in the Saltville thrust zone, Knoxvill Tennessee [J]. J Geophys Res, 1995, 139(B9): 18075~ 18084. [13] Cowie P A, Sornette D, Vanneste C. Multifractal scaling properties of a growing fault population[ J]. Geophysics Journal International, 1995, 122: 457~ 469. doi: 10.1111/j.1365-246X.1995.tb07007.x [14] Cowie P A, Knipe R J, Main I G, et al. Scaling laws for fault and fracture populations: analyses and applications[J]. Journal of Structural Geology, 1996, 18: 135~ 383. doi: 10.1016/S0191-8141(96)80039-3 [15] Wojtal S F. Fault scaling laws and temporal evolution of fault systems[ J]. Journal of Structural Geology, 1994, 16: 603~ 612. doi: 10.1016/0191-8141(94)90100-7 [16] 赵中岩, 王毅. 碎裂岩的分数维分析: 理论、方法及地质意义[J]. 地质科学, 1992, (3): 2 82~2 90. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199203006.htm