FRACTAL STRUCTURE AND SIMULATION OF THICKNESS OF GABBRO RHYTHMIC LAYER: A SAMPLE FROM PANZHIHUA LAYERED INTRUSION
-
摘要: 运用分形理论对四川攀枝花层状侵入体的韵律层厚度进行分维计算, 并结合计算机模拟手段, 对韵律层理的成因进行了探讨.通过分形计算表明, 攀枝花层状侵入体的韵律层在厚度上具有分形结构, 其分维数介于1.4~1.8之间, 不同级别韵律层的厚度分维数不同, 韵律演化的级别越高, 厚度分维数越大.通过模拟计算的韵律色度分维数与实测韵律层的厚度分维数比较接近, 变化规律也比较相似, 这不仅说明在韵律的演化过程中, 厚度和色率之间有一定的内在联系, 也说明了重力在韵律形成机制中是一个重要的影响因素.地球的重力作用与地球的其他物理化学作用在空间和时间上耦合, 形成了这种具有时空分形结构的韵律现象.Abstract: In this paper, the fractal theory is applied to the fractal calculation of thickness of rhythmic layers in Panzhihua layered intrusion in Sichuan Province, China. In addition, this paper discusses the origin of the rhythmic stratification by means of computer simulation. The fractal research on the thickness of Panzhihua layered intrusion shows an excellent fractal structure with its dimension ranging between 1.4 and 1.8. The fractal dimension of thickness varies with different grades of rhythmic layers. The higher the grade of the rhythmic evolution is, the greater the fractal dimension of thickness is. The fractal dimension of rhythmic color thus simulated is close to that of the thickness of the measured rhythmic layer in addition to similar changing patterns, which indicate that a certain internal association is present between the thickness and the chrominance of the rhythm in the process of the magma evolvement, and that the gravity is an important factor of the formation mechanism of the rhythm. The coupling in space and time between earth gravity and other earth physical and chemical effects results in this kind of rhythmic pattern with spatio-temporal fractal structure.
-
Key words:
- layered intrusion /
- gabbro rhythmic layer /
- fractal structure /
- computer simulation /
- Panzhihua
-
表 1 攀枝花层状侵入体韵律层厚度的频率分布
Table 1. Frequency distribution of thickness of rhythmic layer in Panzhihua intrusion
表 2 计算机模拟韵律层的色率频度分布
Table 2. Frequency distribution of color rate of simulated rhythmic layer
-
[1] Mandelbrot B B. Fractals: forms, chance and dimension[M]. San Francisco: W HFreeman, 1977. [2] 申维. 初论分形地质学. 世界地质, 1998, 17(4): 75-84. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ804.015.htm [3] 仪垂祥. 非线性科学及其在地学中的应用[M]. 北京: 气象出版社, 1995. [4] 陈颙. 分形与分维在地球科学中的应用[M]. 北京: 学术期刊出版社, 1988. [5] 刘式达, 刘式适. 分形和分维引论[M]. 北京: 气象出版社, 1993. [6] 沈步明, 沈远超. 新疆某金矿的分维数特征及其地质意义[J]. 中国科学(B辑), 1993, 23(3): 297-302. [7] 汪华斌, 吴树仁. 分形理论在断裂工程活动性评价中的应用[J]. 地质科技情报, 1998, 17(2): 91-96. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ802.018.htm [8] 郑捷. 研究地震和岩石破裂现象的非线性研究方法[J]. 地球物理学报, 1992, 7(1): 20-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ199201003.htm [9] 许志琴, 张建新, 徐惠芬, 等. 中国主要大陆山链韧性剪切带及动力学[M]. 北京: 地质出版社, 1997. 1-7. [10] Mandelbrot B B. The fractal geometry of nature[M]. San Francisco: W. H. Freeman, 1982. 36-41. [11] 钟玉芳, 岑况, 马芳. 攀西层状基性-超基性岩体的韵律特征及分形研究[J]. 地质科技情报, 1999, 18(1): 33-38. doi: 10.3969/j.issn.1000-7849.1999.01.007 [12] 马芳. 攀西地区层状岩体套叠式韵律的分形研究[J]. 四川地质学报, 1999, 19(1): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB901.002.htm [13] 岑况, 钟玉芳. 攀西地区基性超基性岩地球化学及嵌套韵律层的分形动力学研究[J]. 现代地质, 1999, 13(4): 408-414. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ199904008.htm [14] McBirney A R. The Skaergaard layered series. part Ⅰ. Structure and average compositions[J]. J Petrology, 1989, 30(2): 363-397. doi: 10.1093/petrology/30.2.363 [15] Mathez E A. Magmatic metasomatism and formation of the Merensky Reef, Bushveld Complex[J]. Contrib Mineral Petrol, 1995, 119(2-3): 277-286. doi: 10.1007/BF00307287 [16] Boudreau A E, McCallum I S. Investigations of the Stillwater Complex; Part5, Apatites as indicators of evolving fluid composition[J]. Contrib Mineral Petrol, 1989, 102(2): 138-153. doi: 10.1007/BF00375336 [17] Dunn T. An investigation of the oxygen isotope geochemistry of the StillwaterComplex[J]. J Petrology, 1986, 27(4): 987 997. doi: 10.1093/petrology/27.4.987 [18] 宋谢炎, 王玉兰, 张正阶, 等. 层状侵入体韵律层理形成过程的定量模拟[J]. 地质学报, 1999, 73(1): 37-46. doi: 10.3321/j.issn:0001-5717.1999.01.005 [19] Boudreau A E, McBirney A R. The Skaergaard layered series. Part Ⅲ. Non-dynamic layering[J]. J Petrology, 1997, 38(8): 1003-1020. doi: 10.1093/petroj/38.8.1003 [20] Wiebe R A, Snyder D. Slow, dense replenishments of a basic magma chamber: the layered series of the Newark Island layered intrusion, Nail, Labrador[J]. Contrib Mineral Petrol, 1992, 113: 59-72. [21] 鲍征宇. 双扩散对流理论简介及国外研究现状[J]. 地质科技情报, 1989, 8(4): 35-41. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ198904009.htm [22] McBirney A R, Nicolas. The Skaergaard layered series. Part Ⅱ. Magmatic flow and dynamic layering[J]. J Petrology, 1997, 38(5): 569-580. doi: 10.1093/petroj/38.5.569 [23] Brandeis G. Constrains on the formation of cyclic units in ultramafic zones of large basaltic chambers[J]. ContribMineral Petrol, 1992, 112: 312-328. [24] 於崇文. 地质作用的自组织临界过程动力学——地质系统在混沌边缘分形生长(上)[J]. 地学前缘, 2000, 7(1): 13-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200001002.htm [25] 於崇文, 岑况, 鲍征宇, 等. 成矿作用动力学[M]. 北京: 地质出版社, 1988. 230.