ELEMENT GEOCHEMICAL DISTRIBUTION FROM ZHUJI AREA, ZHEJIANG PROVINCE AND SCALING LAWS
-
摘要: 以浙江省诸暨地区为例, 从3个不同尺度上(从区域到局部) 研究了元素的地球化学分布模式, 提出元素服从多重分形分布的观点, 并将这种分布模式解释为地球化学背景与异常之间的关系.在矿床上方通常存在多重分形嵌套的地球化学模式.最后, 指出了标度不变性原理在地球化学研究中的应用前景.Abstract: Element geochemical distribution pattern from regional to local which resulted from Zhuji area, Zhejiang Province has been studied. It is shown that element distributions obey mutifractal distribution which can be used to interpret relation between geochemical background and anomaly. There is a hierarchy of geochemical patterns above known deposits. Finally, since geochemical laws can apply to various scales, and are scale-invariant, they should be treated with the modern concept of scale-invariance.
-
Key words:
- element distribution /
- scale-invariance /
- mutifractal
-
表 1 浙江诸暨地区元素分布的分维D值
Table 1. D values of fractal dimension of element distribution from Zhuji area, Zhejiang Province
-
[1] Ahrens L H. The lognormal distribution of the elements: a fundamental law of geochemistry and its subsidiary[J]. Geochim Cosmochim Acta, 1954, 5: 49-73. doi: 10.1016/0016-7037(54)90040-X [2] Ahrens L H. The lognormal distribution of the elements-Ⅱ[J]. Geochim Cosmochim Acta, 1954, 6: 121-131. doi: 10.1016/0016-7037(54)90021-6 [3] Ahrens L H. Lognormal-type distributions-Ⅲ[J]. Geochim Cosmochim Acta, 1957, 11: 205-212. doi: 10.1016/0016-7037(57)90094-7 [4] Ahrens L H. Lognormal-type distributions in igneous rocks-Ⅳ[J]. Geochim Cosmochim Acta, 1963, 27: 333-343. doi: 10.1016/0016-7037(63)90075-9 [5] Ahrens L H. Lognormal-type distribution in igneous rocks-Ⅴ[J]. Geochim Cosmochim Acta, 1963, 27: 877-890. [6] Vistelius A B. The skew frequency distributions and the fundamental law of the geochemical processes[J]. J Geol, 1960, 68: 1-22. [7] De Wijs H J. Statistics of ore distribution: (1) frequency distribution of assay values[J]. Geol Mijnbouw, 1951, 13: 365-375. [8] De Wijs H J. Statistics of ore distribution: (2) theory of binomial distribution applied to sampling and engineering problems[J]. Geol Mijnbouw, 1953, 15: 12-24. [9] Lasky S G. How tonnage and grade relations help predict ore reserves[J]. Eng Min J, 1950, 151: 81-85. [10] De Young J H Jr. The Lasky cumulative tonnage-grade relationship-a reexamination[J]. Econ Geol, 1981, 76: 1067-1080. doi: 10.2113/gsecongeo.76.5.1067 [11] Cargill S M, Root D H, Bailey E H. Resource estimation from historical data: mercury a test case[J]. Math Geol, 1980, 12: 489-522. [12] Turcotte D L. A fractal approach to the relationship between ore grade and tonnage[J]. Econ Geol, 1986, 81: 1528-1532. doi: 10.2113/gsecongeo.81.6.1528 [13] 林鸿溢, 李映雪. 分形论——奇异性探索[M]. 北京: 北京理工大学出版社, 1992.1-112. [14] Allegre C J, Lewin E. Scaling laws and geochemical distributions[J]. Earthand Planetary Letters, 1995, 132: 1-13. doi: 10.1016/0012-821X(95)00051-D [15] Sanderson D J, Roberts S, Gumiel P. A fractal relation between vein thickness and gold grade in drill core from La Codosera Spain[J]. Economic Geology, 1994, 89: 168-173. [16] 沈步明, 沈远超. 新疆某金矿床的分数维特征及其地质意义[J]. 中国科学(B辑), 1993, 23(3): 297-302. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199303010.htm [17] 施俊法, 王春宁. 中国金矿床分形分布及其对超大型矿床的勘查意义[J]. 地球科学——中国地质大学学报, 1998, 23(6): 616-619. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX806.013.htm