• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    地球化学图纹理的多重分形模拟

    Frederik P.Agterberg

    Frederik P.Agterberg, 2001. 地球化学图纹理的多重分形模拟. 地球科学, 26(2): 142-151.
    引用本文: Frederik P.Agterberg, 2001. 地球化学图纹理的多重分形模拟. 地球科学, 26(2): 142-151.
    Frederik P. Agterberg, 2001. MULTIFRACTAL SIMULATION OF GEOCHEMICAL MAP PATTERNS. Earth Science, 26(2): 142-151.
    Citation: Frederik P. Agterberg, 2001. MULTIFRACTAL SIMULATION OF GEOCHEMICAL MAP PATTERNS. Earth Science, 26(2): 142-151.

    地球化学图纹理的多重分形模拟

    基金项目: 加拿大自然科学基金(NSERCProject)
    详细信息
      作者简介:

      Frederik P.Agterberg, 男, 64岁, 博士, 加拿大国家地调所高级研究员, 渥太华大学兼职教授, 博士生导师, 国际数学地质学会副主席, 国际定量地层学会主席, 荷兰皇家科学院外籍院士, 主要从事数学地质、矿产资源评价和定量地层学研究

    • 中图分类号: P628+.1

    MULTIFRACTAL SIMULATION OF GEOCHEMICAL MAP PATTERNS

    • 摘要: 利用一个简单的基于De Wijs模型的多重分形模型, 可以模拟元素富集值的各种地球化学纹理.每种纹理在平均值上是自相似的, 因为将乘积阶次模型(multiplicative cascade model) 应用到任何子区均能得出类似的纹理样式.在其他的试验中, 通过叠加一个二维趋势纹理(2-dimensional trend pattern) 以及把它与一个常值富集模型混合, 原始的自相似纹理就产生畸变.本文将要研究这些畸变是如何改变用三步矩(3-step method of moments) 所估测的多重分形谱(multifractal spectrum).推导出了满足De Wijs模型纹理的离散和连续频率分布模型.这些模拟纹理满足离散频率分布模型, 当乘积阶次模型(multipicative cascade model) 无限细分时, 假设离散频率分布模型的上界是一连续频率分布, 这个离散分布就在形式上逼近该连续频率分布的上边界.这一极限分布在中心是对数正态的, 但有两个巴利多(Pareto) 分布的尾.这种方法在矿产和油气评价中有重要的潜在意义.

       

    • 图  1  元素富集品位(整体平均值等于1) 两种模拟图纹的三维图

      a.原始模型的128×128个数据矩阵; b.根据幂次律函数向原始模型数据矩阵叠加了趋势的矩阵, 幂次律函数是通过一因子10使得矩阵最大值出现在原始数据最小值的相反方向处; c.b中矩阵的一部分. (这些是用Mathematica 4软件获得的彩色图的黑白版本)

      Fig.  1.  Three-dimensional plots of two simulated map patterns for element concentration values (overall mean value is equal to 1) obtained by means of a stochastic version of the model of De Wijs; largest values truncated at upper end

      图  2  图 1a中128×128个品位值的图样作的集群分割函数与分割单元边长度的双对数(底为2) 映射图

      最小单元的边log2ε=1.仅仅当q为整数时, 计算结果显示出来了.直线的斜率在图 3a中给出

      Fig.  2.  Log-log plot (base 2) of mass-partition function versus length of cell side for pattern of 128×128 concentration values of Fig.1a

      图  3  图 2继续运用计算矩的方法

      a.主体指数τ (q) 和q之间的关系; b.奇异指数α (q) 和q之间的关系; c.多重分形谱值f (α) 与奇异指数α之间的关系

      Fig.  3.  Method of moments continued from

      图  4  d取不同值时直方图法在图 1a纹理中的应用

      a.d=0.4, n=14;b.d=0.4, n=30

      Fig.  4.  Fig.4 Histogram method applied to pattern of Fig.1a with different values d, n

      图  5  与3个实验半方差图相对比的理论多重分形半方差图

      它来自纹理的128行数据, 这些纹理与图 1a相似.实验半方差图与连续曲线之间的偏差相对较大, 但可能没有很大的差别

      Fig.  5.  Theoretical form of multifractal semivariogram in comparison with three experimental semivariograms

      图  6  把所有的品位加上(图 1a) 一个很小的值(0.01) 得到的结果

      图 3c相比, 仅在图右区有差异

      Fig.  6.  A small value (0.01) was added to all concentration values (cf. Fig. 1a)

      图  7  根据图 1b中纹理的128×128个品位, 得到的集群分割函数与分割单元边长度在双对数坐标图(底为2) 的映射关系

      前3个点的连线线段仅仅用于矩法.符号的说明在图 2

      Fig.  7.  Log-log plot (base 2) of mass-partition function versus length of cell side for pattern of 128×128 concentration values of Fig.1b

      图  8  图 1b纹理开始用矩法计算得到的多元谱系

      图 3c相比, 在左区上有所区别

      Fig.  8.  Multivariate spectrum obtained by means of the method of moments starting from pattern shown in Fig.1b

      图  9  a.直方图法在d取0.6、n取20时在品位数据中的应用; b.与a中两个多元谱相关的频率分布曲线; 极限形式的频率差不多接近对数二项频率, 但不同的是0在中心和端点处; c.在Q-Q坐标图上, 上界频率分布的对数正态分布

      Fig.  9.  a: Histogram method illustrated in Fig.4 applied to concentration values with d=0.6 and n=20; b: Frequency distribution curves corresponding to the two multivariate spectra shown in Fig.9a; frequences of limiting form slightly exceed logbinomial frequencies but difference is zero in the center and at the endpoints; c: Lognormal Q-Q plot of upper bound frequency distribution shown in Fig.9b

    • [1] Feder J. Fractals [M ]. NewYork: Plenum, 1988.283.
      [2] Lovejoy S, Schertzer D. Multifractals, universality classes, and satellite and radar measurements of cloud and rain fields[J]. Jour Geophys Res, 1990, 95 (D3): 2021~2034. doi: 10.1029/JD095iD03p02021
      [3] Stanley H E, Meakin P. Multifractal phenomena in physics and chemistry[J]. Nature, 1998, 335 (6189): 405 ~409.
      [4] Herzfeld U C. Fractals in geosciences-challenges and concerns [A]. In: Davis J C, Herzfeld U C, eds. International Assoc Math Geol Studies in Mathematical Geology[C]. New York: Oxford Univ Press, 1993.176~230.
      [5] Herzfeld U C, Kim I I, Orcutt J A. Is the ocean floor a fractal?[J]. Mathematical Geology, 1995, 27 (3): 421~442. doi: 10.1007/BF02084611
      [6] Herzfeld U C, Overbeck C. Analysis and simulation of scale-dependent fractal surfaces with application to seafloor morphology[J]. Computers & Geosciences, 1999, 25 (9): 979~1007.
      [7] Evertsz C J G, Mandelbrot B B. Multifractal measures (Appendix B) [A]. In: Peitgen H -O, Jurgens H, Saupe D, eds. Chaos and fractals[C]. New York: Springer Verlag, 1992.922~953.
      [8] Agterberg F P. Fractals, multifractals, and change of support [A]. In: Dimitrakopoulos R, ed. Geostatistics for the next century[C]. Dordrecht: Kluwer, 1994.223~234.
      [9] De Wijs H J. Statistics of ore distribution[J]. Geologie en Mijnbouw, 1951, 13: 365~375.
      [10] Matheron G. Traité de Géostatistique Appliquée. Mémoires Bur Rech[J]. GéolMinières, 196 2, 14: 33.
      [11] Cheng Q, Agterberg F P. Multifractal modeling and spatial statistics[J]. Mathematical Geol, 1996, 28 (1): 1~16. doi: 10.1007/BF02273520
      [12] Krige D G. Lognormal-De wijsian geostatistics for ore evaluation [M ]. Johannesburg: South African Inst Mining Metall, 1978.50.
      [13] Cheng Q, Agterberg F P, Balantyne S B. The separation of geochemical anomalies from background by fractal methods[J]. Jour Geochem Exploration, 1994, 51: 109~130. doi: 10.1016/0375-6742(94)90013-2
      [14] Agterberg F P. Multifractal modeling of the sizes and grades of giant and supergiant deposits[J]. International Geology Review, 1995, 37 (1): 1~8. doi: 10.1080/00206819509465388
      [15] Harris D P. Mineral resources appraisal [M ]. Oxford: Clarendon Press, 1984.445.
      [16] Cargill S M, Root D H, Bailey E H. Estimating usable resources from historical industry data[J]. Economic Geol, 1981, 84: 10811095.
      [17] Lee P J. Statistical methods for estimating petroleum resources [M ]. Taiwan: Department of Earth Sciences, National Cheng Kung University, 1999.270.
      [18] Drew L J, Schuenemeyer J H, Bawiec W J. Estimation of the future rates of oil and gas discoveries in the western gulf of Mexico[J]. US Geol Survey Profess Paper, 1982, 1252: 26.
      [19] Meneveau C, Sreenivasan K R. Simple multifractal cascade model for fully developed turbulence[J]. Phys Review Letters, 1987, 59: 424~1427.
      [20] Schertzer D, Lovejoy S, Schmitt F, et al. Multifractal cascade dynamics and turbulent intermittency[J]. Fractals, 1997, 5 (3): 427~471. doi: 10.1142/S0218348X97000371
      [21] Cheng Q. Multifractal modelling and spatial analysis with GIS: gold potential estimation in the Mitchell-Sulphurets area, nort western British Columbia[D]. Canada: University of Ottawa, 1994.268.
      [22] Sim B B L, Agterberg F P, Beaudry Ch. Determining the cutoff between background and relative base metal smelter contamination levels using multifractals methods[J]. Computers & Geosciences, 1999, 25 (7): 1023~1041.
      [23] Switzer P, McBride S. Modeling indoor air pollution using superposition[J]. Bulletin International Statistical Institute, Tome LVIII, 1999, Book2: 501~504.
      [24] Agterberg F P. Discussion of "Statistical aspects of physical and environmental science"[J]. Bulletin International Statistical Institute, Tome 58, 1999, Book3: 213~214.
      [25] Agterberg F P, Cheng Q, Wright D F. Fractal modeling of mineral deposits [A]. In: Elbrond J, Tang X, eds. Proceedings, APCOM XXIV, international symposium on the application of computers and operations research in the mineral industries[C]. Montréal, Canada: Canad Inst Mining Metall, 1993.43~53.
    • 加载中
    图(9)
    计量
    • 文章访问数:  3344
    • HTML全文浏览量:  106
    • PDF下载量:  2
    • 被引次数: 0
    出版历程
    • 收稿日期:  2001-02-18
    • 刊出日期:  2001-04-25

    目录

      /

      返回文章
      返回