PHASE TRANSFORMATION BOOSTER IN WATER DURING ULTRAHIGH-PRESSURE METAMORPHISM
-
摘要: 据静水压力梯度计算, 榴辉岩形成深度至少要70km, 含柯石英榴辉岩的形成深度至少要12 0km, 而同时含有柯石英和金刚石的榴辉岩形成深度至少要145km, 超高压变质岩要从如此深的部位折返到地表是不可想象的.大量资料表明水参与了超高压变质作用过程.通过矿物的脱水行为、水的相变和地温曲线等研究, 指出由于存在水的相变增压等多种增压因素, 大大提高了超高压变质作用过程中的地压梯度, 据静水压力计算出的超高压变质岩形成深度只是最大深度, 其形成时的实际深度要比该最大深度小得多.Abstract: The calculation in the hydrostatic pressure gradient shows that the eclogites were formed in the depth of at least 70 km, and the coesite-bearing eclogites in the depth of at least 120 km. In addition, the eclogites containing both the diamond and coesite in the depth of at least 145 km. It is unimaginable that the ultrahigh-pressure metamorphic rocks are uplifted to the earth surface from such depths. Many references show that the water is indispensable to the ultrahigh-pressure metamorphism. Based on the studies of the mineral dehydration, the geothermal curves and the phase change diagram of water, this paper indicates that such supercharges as the phase transformation booster in water greatly increase the lithostatic gradient in the process of the ultrahigh-pressure metamorphism. The depth for the formation of the ultrahigh-pressure metamorphic rocks calculated with hydrostatic pressure is only the greatest depth. However, the actual depth for the formation of the ultrahigh-pressure metamorphic rocks was much smaller than the theoretical depth as calculated with hydrostatic pressure.
-
Key words:
- ultrahigh-pressure metamorphism /
- water /
- phase change /
- pressure
-
图 1 岩石圈内水和一些矿物的相图及地温曲线
SiO2相图引自文献[4];Dmd→Gr和Jd+Qz→Ab引自文献[6];前寒武纪地温和大洋地温据Clark和Ringwood据文献[5];秦岭中部地温线, 引用伊川-宜昌地学断面岩石圈地温分布图之栾川至西峡段地温, 据文献[8]绘制; A为水的临界点, tc为374℃, pc为0.022 1 GPa, 为了清晰, A点的压力未按比例标出, 引自文献[3];tm为地幔固相线, 在0.85 tm~tm之间温、压数据不准; 压力与深度的对应关系是据初步地球参考模型(PREM), 引自文献[7].相变温度是温度区间.不同的实验者结果有差异, 没有考虑体系中各组分相互作用对相变界线的影响, 此图不足于精确定p和t.St.斯石英; Coe.柯石英; Qz.石英; α-Qz.α石英; β-Qz.β石英; Dmd.金刚石;Gr.石墨; Jd.硬玉
Fig. 1. Phase diagram of water and some minerals and geothermal curves in the lithosphere
表 1 不同温度和压力下气态水的密度和摩尔体积
Table 1. Density and molar volume of vapor at various pressures and temperatures
-
[1] 王方正. 高压超高压变质岩形成深度讨论[J]. 地球科学———中国地质大学学报, 1996, 2 1 (1): 42-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX601.005.htm [2] 钟增球, 张宏飞, 索书田, 等. 大别超高压变质岩折返过程中的部分熔融作用[J]. 地球科学———中国地质大学学报, 1999, 2 4 (4): 393-399. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199904014.htm [3] 姚允斌, 朱志昂. 物理化学教程(上册)[M]. 长沙: 湖南教育出版社, 1991.16-36. [4] 陈丰, 林传易, 张惠芬. 矿物物理学概论[M]. 北京: 科学出版社, 1995.397. [5] 路凤香. 地幔岩石学[M]. 武汉: 中国地质大学出版社, 1988.32. [6] 周若, 王方正. 岩石物理化学[M]. 河南: 河南科学技术出版社, 1987.52-54. [7] 安德森DL. 地球的理论[M]. 关华平, 杨玉荣, 刘小伟, 等译. 北京: 地质出版社, 1993.119-120, 176-180, 473-478. [8] 赵志丹, 张本仁, 高山. 秦岭造山带地球化学图[Z]. 北京: 科学出版社, 1996. [9] 吕古贤, 陈晶, 李晓波, 等. 构造附加静水压力研究与含柯石英榴辉岩成岩深度计算[J]. 科学通报, 1998, 43 (2 4): 2590-2602. doi: 10.3321/j.issn:0023-074X.1998.24.003 [10] Brace W F, Ernst W G, Kallberg R W. An experimental study of tectonic overpressure in Franciscan rocks[J]. Geol Soc Am Bull, 1970, 81: 132 5-1338. doi: 10.1130/0016-7606(1970)81[1325:AESOTO]2.0.CO;2 [11] Mancktelow N. On metamorphic" pressure" during deformation[J]. Schweiz Mineral Petrogr Mitt, 1993, 73: 340-341. [12] 陈丰, 郭九皋, 王三学, 等. 金刚石中的高钾高氯包体和地幔交代作用[J]. 矿物学报, 1992, (12): 193-199. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB199203000.htm [13] 游振东. 变质地质学的三大前缘[J]. 地学前缘, 1999, (1-2): 111-124. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY4Z1.020.htm [14] 陈国玺, 张月明. 矿物热分析粉晶分析相变图谱手册[M]. 成都: 四川科技出版社, 1989. [15] 黄伯龄. 矿物差热分析鉴定手册[M ]. 北京: 科学出版社, 1987. [16] 唐纳W海因德曼. 火成岩与变质岩岩石学(上册)[M]. 王方正, 邱家骧, 耿小云, 译. 武汉: 中国地质大学, 1989.71-85. [17] 顾芷娟, 郭才华, 李彪, 等. 壳内低速高导带成因初步探讨[J]. 中国科学(D辑), 1995, 25 (1): 108-112. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199501016.htm [18] 朱茂旭, 谢鸿森, 郭捷, 等. 高温高压下蛇纹石电导率实验研究[J]. 科学通报, 1999, 44 (11): 1198-1202. doi: 10.3321/j.issn:0023-074X.1999.11.017 [19] 郭尼克别尔格. MT. 高压下的化学平衡和反应速率[M]. 韦庆昆, 译. 北京: 科学出版社, 196 6.48-50. [20] 段振豪. 地质流体热力学研究现状与发展趋势[J]. 地质科技情报, 1998, (增刊): 2-12. [21] Duan Z H, Moller N, Weare J H. Molecular dynamics simulation of pVT properties of geological fluids and a general equation of state of nonpolar andweakly polargases up to 2000 K and 20000 bar[J]. Geochim Cosmochim Acta, 1992, 56: 3839-3845. doi: 10.1016/0016-7037(92)90175-I [22] Brodholt J P, Wood B J. Measurements of pVt properties of water to 25 kbar and 1 600 from synthetic fluid inclusions in corundurm[J]. Geochim Cosmochim Acta, 1994, 58: 2143-2148. doi: 10.1016/0016-7037(94)90292-5