Record of Apatite Fission Track of the Differential Uplift in Both Sides of Jiali Fault Belt since Late Cenozoic
-
摘要: 对嘉黎断裂带两侧的磷灰石裂变径迹年代学测试表明, 断裂带北侧的磷灰石裂变径迹年龄在5.6~1.7Ma之间, 属中新世晚期;断裂带南侧的磷灰石裂变径迹年龄明显较小, 6个样品中有5个样品的磷灰石裂变径迹年龄在4.0~.9Ma之间, 属上新世早期.嘉黎断裂带北侧5.6~1.7Ma期间的隆升速率为0.07~.09mm/a.5.8Ma以来平均剥露速率为0.50mm/a, 平均隆升速率1.33mm/a.断裂带南侧4.7Ma以来平均剥露速率为0.62mm/a, 平均隆升速率1.68mm/a.两侧样品都反映上新世以来有较强烈的隆升作用, 并且南侧比北侧隆升作用更强烈.Abstract: The apatite fission track (AFT) chronology in both sides of Jiali fault belt shows that the AFT age in the north side of the fault belt is 5.6-11.7 Ma which belongs to Late Miocene; and the age of the south side is obviously younger, because the ages of five out of six samples are between 4.0 Ma and 5.9 Ma, belonging to early Pliocene. During 5.6-11.7 Ma, the uplift rate in the north side of Jiali fault belt is 0.07-0.09 mm/a. Since 5.8 Ma, the average denudation rate is 0.50 mm/a, and the average uplift rate is 1.33 mm/a in the north side. While, the average rate of denudation and uplift is 0.62 mm/a and 1.68 mm/a in the south side of Jiali fault belt since 4.7 Ma. The samples collected from both sides of Jiali fault belt reflect the strong uplift since Pliocene, and the south side uplifts more strongly than the north side.
-
Key words:
- Jiali fault belt /
- late Cenozoic /
- apatite fission track /
- plateau uplift
-
图 1 研究区大地构造位置与构造单元划分图 (据潘桂棠等, 2001修改;中国地质调查局西南办《青藏高原及其邻区大地构造单元初步划分方案》, 2003)
A.印度陆块;A2.高喜马拉雅山结晶岩带;B.印度河-雅鲁藏布江结合带;C.拉达克-冈底斯-拉萨-腾冲陆块 ;C1.班戈-腾冲燕山晚期岩浆弧带;C2.狮泉河-申扎-嘉黎结合带; C4.隆格尔-工布江达断隆带;C5.罕萨-冈底斯-下察隅晚燕山-喜马拉雅期岩浆弧带 (冈底斯火山-岩 浆弧带) ;D.班公湖-怒江结合带 (含日土、聂荣残余弧、嘉玉桥微陆块) ;E.喀喇昆仑-南羌塘-左贡陆块;E2.南羌塘坳陷带;F.双湖-昌宁结合带;G.塔什库尔干-甜水海-北羌塘陆块;G2.北羌坳陷带;H.乌兰乌拉湖-澜沧江结合带;I.昌都-芒康-思茅陆块:I2.昌都-兰中新生代复合盆地;I3.开心岭-杂多-维登弧火山岩带 (P-T3)
Fig. 1. Geotectonic location and tectonic unit division of study area
图 2 研究区地质图与裂变径迹样品分布
1.中侏罗统至下白垩统;2.晚石炭-早二叠世来姑组;3.前奥陶纪雷龙库组;4.前奥陶纪岔萨岗组;5.中新元古代念青唐古拉岩群;6.古近纪二长花岗岩;7.晚白垩世钾长花岗岩;8.晚白垩世斑状二长花岗岩;9.晚白垩世二长花岗岩;10.早白垩世斑状二长花岗岩;11.早白垩世二长花岗岩;12.晚侏罗世二长花岗岩;13.早二叠世二长花岗岩;14.正断层;15.逆断层;16.平移断层;17.主干断层;18.裂变径迹样品位置及样品号
Fig. 2. Distributing map of apatite fission track dating samples and geological map of study area
表 1 磷灰石裂变径迹测定结果
Table 1. Apatite fission track dating results of Jiali fault belt
表 2 磷灰石裂变径迹年龄和剥露速率、隆升速率
Table 2. Apatite fission track ages, denudation rates and uplift rates
-
[1] Cui, Z. J., Gao, Q. Z., Liu, G. N., et al., 1996. Planation surfaces, palaeokarst and uplift of Xizang (Qinghai-Xizang) plateau. Science in China (Ser. D), 26: 378-386 (in Chinese). [2] Ding, L., Zhong, D. L., Pan, Y. S., et al., 1995. Fission trackdating evidence on fast uplifting since Pliocene of theeastern Hi malayan syntaxis. Chinese Science Bulletin, 40: 1497-1500 (in Chinese). doi: 10.1360/csb1995-40-16-1497 [3] Hu, C. Z., 1990. Characteristics of Shiquanhe-Guchang ophiolite belt and its geologic significance. Journal of Chengdu University of Technology, 17: 23-30 (in Chinese with English abstract). [4] Jiang, W., Mo, X. X., Zhao, C. H., et al., 1998. Mineral fission-track dates and research on ulifting velocity of Qinghai-Xizang plateau. Journal of Geomechanics, 4: 13-18 (in Chinese with English abstract). [5] Li, J. J., 1999. Landforms evolution and Asian seasonal-wind of Qinghai-Xizang (Tibetan) plateau. Marine Geology & Quaternary Geology, 19: 1-9 (in Chinese with English abstract). [6] Liu, D. M., Li, D. W., Yang, W. R., et al., 2005. Evidence from fission track ages for the tectonic uplift of the Himalayan orogen during late Cenozoic. Earth Science—Journal of China University of Geosciences, 30: 147-152 (in Chinese with English abstract). [7] Liu, S. S., Zhang, F., 1987. Fission track ages and uplift rates of the South Xizang (Tibet) region. Science in China (Ser. B), 17: 1000-1010 (in Chinese). [8] Pan, G. T., Wang, L. Q., Li, X. Z., et al., 2001. The tectonic framework and spatial allocation of the archipelagic arcbasin systems on the Qinghai-Xizang plateau. Sedi mentary Geology and Tethyan Geology, 21 (3): 1-26 (in Chinese with English abstract). [9] Pan, Y. S., Kong, X. R., 1998. Lithosphere structure, evolution and dynamics of Qinghai-Xizang (Tibetan) plateau. Guangdong Science & Technology Press, Guangzhou, 379-400 (in Chinese). [10] Ren, J. W., Shen, J., Cao, Z. Q., et al., 2000. Quaternary faulting of Jiali fault, southeast Tibetan plateau. Seismology and Geology, 22 (4): 344-350 (in Chinesewith English abstract). [11] Shi, Y. F., Li, J. J., Li, B. Y., 1998. Uplift and environmental changes of Qinghai-Xizang (Tibetan) plateauin the late Cenozoic. Guangdong Science & Technology Press, Guangzhou, 17-414 (in Chinese). [12] Wang, A., Wang, G. C., Xie, D. F., et al., 2007. Fission trach geochronology of Xiaonanchuan pluton and the morphotectonin evolution of eastern Kunlun since late Miocene. Earth Science—Journal of China Universityof Geosciences, 32 (1): 51-58 (in Chinese with Englishabstract). [13] Wang, G. C., Xiang, S. Y., John, I. G., et al., 2003. Upliftand exhumation during Mesozoic in Halaguole-Hatu area, East Segment of eastern Kunlun mountains: Evidence from Zircomand Apatite fission-track ages. Earth Science—Journal of China University of Geosciences, 28: 645-652 (in Chinese with English abstract). [14] Xiang, S. Y., Wang, G. C., Deng, Z. L., 2003. Deposit response to important tectonic events of Cenozoic plateau uplift, East segment of eastern Kunlun mountains. Earth Science—Journal of China University of Geo-sciences, 28: 615-620 (in Chinese with English ab-stract). [15] Yang, R. H., Li, C., Chi, X. G., et al., 2003. The primarystudy of geochemical characteristics and tectonic setting of ophiolite in Yongzhu-Namuhu, Tibet. Geoscience, 17: 14-19 (in Chinese with English abstract). [16] Yuan, W. M., Hou, Z. Q., Li, S. R., et al., 2002. Evidence of fission track dating of activity of Brahmaputra athwart clash belt, Tibet. Chinese Science Bulletin, 47: 147-150 (in Chinese). doi: 10.1360/csb2002-47-2-147 [17] Yuan, W. M., Wang, S. C., Li, S. R., et al., 2001. The fission track evidence of conformation activity in Gangdise belt, Tibet. Chinese Science Bulletin, 46: 1739-1742 (in Chinese). doi: 10.1360/csb2001-46-20-1739 [18] Zhao, Z. D., Mo, X. X., Guo, T. Y., et al., 2003. fission track ages of pluton in South Tibet and plateau uplift. Advance in Natural Sciences, 13: 877-880 (in Chi-nese). [19] Zheng, L. L., Geng, Q. R., Dong, H., et al., 2003. The discovery and significance of the relicts of ophioliticmélanges along the Parlung Zangboin the Bomi region, eastern Xizang. Sedi mentary Geology and Tethyan Geology, 23 (1): 27-30 (in Chinese with English ab-stract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201503018.htm [20] Zhong, D. L., Ding, L., 1996. A discussion on uplift procession and its dynamics of the Qinghai-Xizang (Tibetan) Plateau. Science in China (Ser. D), 26: 289-295 (in Chinese). [21] 崔之久, 高全洲, 刘耕年, 等, 1996. 夷平面, 古岩溶与青藏高原隆升. 中国科学 (D辑), 26: 378-386. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199604014.htm [22] 丁林, 钟大赉, 潘裕生, 等, 1995. 东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据. 科学通报, 40: 1497-1500. doi: 10.3321/j.issn:0023-074X.1995.16.018 [23] 胡承祖, 1990. 狮泉河-古昌-永珠蛇绿岩带特征及其地质意义. 成都地质学院学报, 17: 23-30. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG199001005.htm [24] 江万, 莫宣学, 赵崇贺, 等, 1998. 矿物裂变径迹年龄与青藏高原隆升速率研究. 地质力学学报, 4: 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX801.001.htm [25] 李吉均, 1999. 青藏高原的地貌演化与亚洲季风. 海洋地质与第四纪地质, 19: 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ901.001.htm [26] 刘德民, 李德威, 杨巍然, 等, 2005. 喜马拉雅造山带晚新生代构造隆升的裂变径迹证据. 地球科学———中国地质大学学报, 30: 147-152. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200502003.htm [27] 刘顺生, 张峰, 1987. 西藏南部地区的裂变径迹年龄和上升速度的研究. 中国科学 (B辑), 17: 1000-1010. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK198709011.htm [28] 潘桂棠, 王立全, 李兴振, 等, 2001. 青藏高原区域构造格局及其多岛弧盆系的空间配置. 沉积与特提斯地质, 21 (3): 1-26. doi: 10.3969/j.issn.1009-3850.2001.03.001 [29] 潘裕生, 孔祥儒, 1998. 青藏高原岩石圈结构演化和动力学. 广州: 广东科技出版社, 379-400. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199705001.htm [30] 任金卫, 沈军, 曹忠权, 等, 2000. 西藏东南部部嘉黎断裂新知. 地震地质, 22 (4): 344-350. doi: 10.3969/j.issn.0253-4967.2000.04.002 [31] 施雅风, 李吉均, 李炳元, 1998. 青藏高原晚新生代隆升与环境变化. 广州: 广东科技出版社, 17-414. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201302005.htm [32] 王岸, 王国灿, 谢德凡, 等, 2007. 东昆仑山小南川岩体裂变径迹年代与中新世晚期以来的构造地貌演化. 地球科学———中国地质大学学报, 32 (1): 51-58. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200701006.htm [33] 王国灿, 向树元, John, I. G., 等, 2003. 东昆仑东段巴隆哈图一带中生代的岩石隆升剥露—锆石和磷灰石裂变径迹年代学证据. 地球科学———中国地质大学学报, 28: 645-652. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200306010.htm [34] 向树元, 王国灿, 邓中林, 2003. 东昆仑东段新生代高原隆升重大事件的沉积响应. 地球科学———中国地质大学学报, 28: 615-620. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200306005.htm [35] 杨日红, 李才, 迟效国, 等, 2003. 西藏永珠-纳木湖蛇绿岩地球化学特征及其构造环境初探. 现代地质, 17: 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200301003.htm [36] 袁万明, 侯增谦, 李胜荣, 等, 2002. 雅鲁藏布江逆冲带活动的裂变径迹定年证据. 科学通报, 47: 147-150. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200202016.htm [37] 袁万明, 王世成, 李胜荣, 等, 2001. 西藏冈底斯带构造活动的裂变径迹证据. 科学通报, 46: 1739-1742. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200120016.htm [38] 赵志丹, 莫宣学, 郭铁鹰, 等, 2003. 西藏南部岩体裂变径迹年龄与高原隆升. 自然科学进展, 13: 877-880. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200308019.htm [39] 郑来林, 耿全如, 董翰, 等, 2003. 波密地区帕隆藏布残留蛇绿混杂岩带的发现及其意义. 沉积与特提斯地质, 23 (1): 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD200301003.htm [40] 钟大赉, 丁林, 1996. 青藏高原的隆升过程及其机制探讨. 中国科学 (D辑), 26: 289-295. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDW199711001345.htm