Coupling between the Uplift of Qinghai-Tibet Plateau and Distribution of Basins of Paleogene-Neogene
-
摘要: 根据在高原及邻区近7年完成的1∶250000地质填图资料, 划分出青藏高原及邻区古近系-新近系残留盆地共92个.沉积范围大且序列完整的盆地分布在高原周缘和腹地.在高原的南、北和东缘, 沿区域性大断裂带分布许多走滑拉分盆地.古新世—始新世海相地层仅分布在藏南和新疆叶城地区.藏南半深海-深海沉积沿江孜-萨嘎-郭雅拉-桑麦一线分布, 其海水东浅西深, 西部为活动型, 反映新特提斯洋闭合的时间从东向西变新, 地壳抬升首先开始于东侧.晚白垩世隆起区主要分布在研究区东北部, 高原总体地貌格局为东北高, 西南低.古新世—始新世出现了腾冲-班戈、库牙克-格尔木新的隆起带, 西昆仑隆起带向东拓展, 祁连隆起带加宽, 松潘-甘孜隆起区范围向东有所萎缩.渐新世期间, 冈底斯和喜马拉雅带掘起, 昆仑-阿尔金-祁连的进一步隆起, 造成了整个高原的周缘为山系、而腹地为盆的宏观地貌格局.中-上新世期间, 冈底斯和喜马拉雅带、喀喇昆仑-西昆仑地区进一步较大幅度隆起;高原从渐新世及其以前的东高西低格局, 经历了中新世—上新世全区的不均衡隆升和拗陷, 最终在上新世末铸就了西高东低的地貌格局, 青藏做为一个统一的高原发生了重大的地貌反转事件.青藏高原新生代的隆升过程以多阶段、不均匀、非等速为特征, 具有强烈的时空差异性.Abstract: Recent effort on comprehensive geological mapping in the Qinghai-Tibet plateau and adjacent regions permits recognition of 92 remnant sedimentary basins filled with the Paleogene-Neogene sediments. The relatively large basins with complete Paleogene-Neogene sequences are seen around the margins and at central part of the plateau. Most of the slip-pull basins are distributed along the major faults in the southern, northern, and eastern margins of the plateau. The marine Paleogene-Neogene successions are limited to the southern Tibet and the Yecheng area of Xinjiang. Both the subabyssal and abyssal sequences are exposed at the Gyangze, Saga, Guoyala and Sangmai areas. The deep-water facies successions outcrop in the west, while the shallow-water facies sequences in the east, indicating the closure of the Neo-Tethys Ocean occurring earlier in the east and then in the west. Tectonic uplift of the Qinghai-Tibet plateau occurred first in its eastern part. During the Late Cretaceous, tectonic uplift of the Plateau occurred in its northeastern part and configuration of the Plateau was characterized by paleo-highs in the northeast and depressions in the west. In Paleocene-Eocene interval, the Tengchun-Bange and Kuyake-Golmud areas experienced local tectonic uplifting; the West Kunlun uplift zone broadened easterly; the Qilian uplift zone broadened southerly; the Sunpa-Ganzi uplift zone shrank easterly. The Oligocene configuration of the Plateau was characterized by mountain chains rising along its margins and sedimentary basins occurring in the central part because of tectonic uplifts of the Gangdise and Himalaya blocks. In the same time, the Kunlun-Arjin-Qilian uplift zones have broadened southerly and northerly. In contrast, the expended uplift zones of the Gangdise, Himalaya, Karakorum, and Kunlun blocks feature the paleogeographic contours of the Qinghai-Tibet Plateau during the Miocene-Pliocene. As a result, the paleogeographic configurations of the Qinghai-Tibet Plateau turned over during the Cretaceous-Pliocene transition, with high contours in the east in the pre-Oligocene switching to the high contours in the west at the end-Pliocene. The uplift of the Qinghai-Tibet Plateau during Cenozoic is episodic and the uplifts of various blocks within the Plateau are different in space and time.
-
图 1 青藏高原及邻区古近系一新近系残留盆地分布
图中盆地编号1~92对应的盆地名称见表1
Fig. 1. Distribution of the remnant basins of Qinghai-Tibet and adjacent areas
表 1 青藏高原及邻区古近系—新近系残留盆地形成机制和沉积特征
Table 1. Forming mechanism and sediment character of Paleogene-Neogene remnant basins of Qinghai-Tibet and adjacent areas
表 2 青藏高原及邻区古近纪-新近纪残留盆地岩石地层序列及其对比
Table 2. Sequence and correlation of lithostratigraphic untis from the Paleogene-Neogene remnant basins of Qinghai-Tibet and adjacent areas
-
[1] Achache, J., Courtillot, V., Zhou, Y. X., 1984. Paleogeographic and tectonic evolution of South Tibet since middle Cretaceous time: New paleomagnetic data and synthesis. Journal of Geophysical Research, 89: 10311-10339. doi: 10.1029/JB089iB12p10311 [2] Achache, J., Courtillot, V., Zhou, Y. X., 1984. Paleogeographic and tectonic evolution of South Tibet since middle Cretaceous time: New paleomagnetic data and synthesis. Journal of Geophysical Research, 89: 10311-10339. doi: 10.1029/JB089iB12p10311 [3] Aitchison, J. C., Ali, J. R., Davis, A. M., 2007. When and where did India and Asia collode?Journal of Geophysical Research, 112, B05423: 1-19. [4] An, Z. S., Kutzbach, J. E., Prell, W. L., et al., 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature, 411: 62-66. doi: 10.1038/35075035 [5] Bureau of Geology and Mineral Resoures of Gansu Province. 1997. Stratigraphy (Lithostratic) of Gansu Province. China University of Geosciences Press, Wuhan, 1-288 (in Chinese). [6] Bureau of Geology and Mineral Resoures of Qinghai Province. 1997. Stratigraphy (Lithostratic) of Qinghai Province. China University of Geosciences Press, Wuhan, 1-338 (in Chinese). [7] Bureau of Geology and Mineral Resoures of Sichuan Province. 1997. Stratigraphy (Lithostratic) of Sichuan Province. China University of Geosiences Press, Wuhan, 1-417 (in Chinese). [8] Bureau of Geology and Mineral Resoures of Xinjiang Uygur Autonomous Region, 1999. Stratigraphy (Lithostratic) of Xinjiang uygur autonomous region. China University of Geosciences Press, Wuhan, 1-430 (in Chinese). [9] Bureau of Geology and Mineral Resoures of Xizang Autonomous Region, 1997. Stratigraphy (Lithostratic) of Xizang autonomous region. China University of Geosciences Press, Wuhan, 1-302 (in Chinese). [10] Bureau of Geology and Mineral Resoures of Yunnan Province, 1996. Stratigraphy (Lithostratic) of Yunnan Province. China University of Geosciences Press, Wuhan, 1-366 (in Chinese). [11] Chung, S. L., Lo, C. H., Lee, T. Y., et al., 1998. Diachronous uplift of the Tibetan plateau starting 40 Myr ago. Nature, 394: 769-773. doi: 10.1038/29511 [12] Clark, M. K., House, M. A., Royden, L. H., 2005. Late Cenozoic uplift of southeastern Tibet. Geology, 33 (6): 525-528. doi: 10.1130/G21265.1 [13] Coleman, M., Hodges, K., 1995. Evidence for Tibetan plateau uplift before 14 myr ago from a new minimum age for east-west estension. Nature, 374: 49-52. doi: 10.1038/374049a0 [14] Cui, Z. J., Gao, Q. Z., Liu, G. N., et al. 1996. Planation surfaces, palaeokarst and uplift of Xizang (Tibet) plateau. Science in China (Ser. D), 39 (4): 391-400 (in Chinese). [15] Cui, Z. J., Wu, J. Q., Liu, G. N., et al. 1998. On Kunlun-Yellow River tectonic movement. Science in China (Ser. D), 41 (6): 592-600. [16] David, B. R., Brian, S. C., 2006. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature, 439: 677-681. doi: 10.1038/nature04506 [17] Ding, L., 2003. Paleocene discovering deep water sediment and radiolarian fauna, and it restrict evolution of the foreland basin in Brahmaputra suture, Xizang. Science in China (Ser. D), 33 (1): 47-58 (in Chinese). [18] Ding, L., Zhong, D. L., Pan, Y. S., et al., 1995. Fission track dating evidence on fast uplifting since Pliocene of the eastern Himalayan syntaxis. Chinese Science Bulletin, 40 (16): 1479-1500 (in Chinese). [19] Fang, X. M, Yan, M. D, Van der Voo, R., et al., 2005. Late Cenozoic deformation and uplift of the NE Tibetan plateau: Evidence from high-resolution magnetostratigraphy of the Guide basin, Qinghai Province, China. Geological Society of America Bulletin, 117 (9): 1208-1225. doi: 10.1130/B25727.1 [20] Harrison, T. M., Copeland, P., Kidd, W. S. F., et al., 1992. Raising Tibet. Science, 255: 1663-1670. doi: 10.1126/science.255.5052.1663 [21] Li, G. B., Wan, X. Q., Qi, H. R. G., et al., 2002. Eocene fossil carbonate microfacies and sedimentary environment in Gangba-Tingri, southern Tibet. Chinese Geology, 29 (4): 401-406 (in Chinese). [22] Li, H. B., Yang, J. S., 2004. Evidence for cretaceous uplift of the northern Qinghai-Tibetan plateau. Earth Science Frontiers, 11 (4): 345-359 (in Chinese with English abstract). [23] Li, J. J., Fang, X. M., Ma, H. Z., et al., 1996. Geomorphological and environmental evolution in the upper reaches of the Yellow river during the late Cenozoic. Science in China (Ser. D), 26 (4): 316-322. [24] Li, J. J., Fang, X. M., Pan, B. T., et al., 2001. Late Cenozoic intensive uplift of Qinghai-Xizang plateau and its impacts on enviroments in surrounding area. Quaternary Sciences, 21 (5): 381-391 (in Chinese with English abstract). [25] Li, J. J., Wen, S. X., Zhang, Q. S., et al., 1979. Discussing age, extent and form about uplifting of the Tibet plateau. Science in China (Ser. D), (6): 608-616 (in Chinese). [26] Li, S. T., Xie, X. N., Wang, H., et al., 2004. Sedimentary basin analysis: Principle and application. Higher Education Press, Beijing, 1-410 (in Chinese). [27] Li, T. D., 1995. The uplifting process and mechanism of the Qinhai-Tibet plateau. Acta Geosicientia Sinica, 16 (1): 1-9 (in Chinese with English abstract). [28] Molnar, P., England, P., 1990. Late Cenozoic uplift of mountain ranges and global climate change: Chicken of egg?Nature, 346: 29-34. [29] Molnar, P., England, P., Martinod, J., 1993. Mantle dynamics, uplift of the Tibetan plateau, and the Indian Monsoon. Reviews of Geophysics, 31: 357-396. doi: 10.1029/93RG02030 [30] Pan, G. T., Ding, J., Yao, D. S., et al., 2004. The Geological map of the Qinghai-Xizang (Tibet) plateau and adjacent areas (1∶500 000). Chengdu Cartographic Publishing House, Chengdu, 1-133. [31] Pan, G. T., Wang, P. S., Xu, Y. R., et al., 1990. Cenozoic tectonic evolution of Qinghai-Xizang plateau. Geological Publishing House, Beijing, 1-165 (in Chinese). [32] Pan, Y. S., 1999. Formation and uplifing of the Qinghai-Tibet plateau. Earth Science Frontiers, 6 (3): 153-163 (in Chinese with English abstract). [33] Shi, Y. F., Li, J. J., Li, B. Y., et al., 1998. Uplift and environmental changes of Qinghai-Xizang (Tibetan) in the late Cenozoic. Guangdong Science and Technology Press, Guangzhou, 1-463 (in Chinese). [34] Spicer, R. A., Harris, N. B. W., Widdowson, M., et al., 2003. Constant elevation of southern Tibet over the past 15 million years. Nature, 421: 622-624. doi: 10.1038/nature01356 [35] Sun, H. L., Zheng, D., 1998. Formation, evolvement and development of the Qinghai-Xizang (Tibetan) plateau. Guangdong Science and Technology Press, Guangzhou, 1-350 (in Chinese). [36] Tapponnier, P., Xu, Z., Roger, F., et al., 2001. Oblique stepwise rise and growth of the Tibet plateau. Science, 294: 1671-1677. doi: 10.1126/science.105978 [37] Turner, S., Hawkesworth, G., Liu, J., et al., 1993. Timing of Tibetan uplift constrained by analysis of volcanic rocks. Nature, 364: 50-54. doi: 10.1038/364050a0 [38] Wan, X. Q., 1990. Cretaceous-early Tertiary foraminfera of Xizang (Tibet) and evolution of the Tethys-Hinalayan sea. Acta Micropalaeontologica Sinica, 7 (2): 169-186 (in Chinese with English abstract). [39] Wan, X. Q., Ding, L., 2002. Discovery of the latest Cretaceous planktonic foraminifera from Gyirong of southern Tibet and its chronostratigraphic significance. Acta Palaeotologica, 41 (1): 89-95 (in Chinese with English abstract). [40] Wang, C. Y., Shi, Y. L., Zhou, W. H., 1981. Dynamic uplift of the Himalaya. Nature, 294: 410-414. doi: 10.1038/294410a0 [41] Wang, Y., Deng, T., Biasatti, D., 2006. Ancient diets indicate significant uplift of southern Tibet after ca. 7 Ma. Geology, 34 (4): 309-312. doi: 10.1130/G22254.1 [42] Wang, G. C., Xiang, S. Y., John, I. G., et al., 2003. Uplift and exhumation during Mesozoic in Halaguole-Hatu area, east segment of the eastern Kunlun—Evidence from zircon and apatite fission-track ages. Earth Science—Journal of China University of Geosciences, 28 (6): 645-652 (in Chinese with English abstract). [43] Wang, G. C., Yang, W. R., Ma, H. D., et al., 2005. Comparing of the tectonic uplift since late Cenozoic between the east-west Kunlun mountains. Earth Science Frontiers, 12 (3): 157-166 (in Chinese with English abstract). [44] Wang, H. Z., Shi, X. Y., Wang, X. L., et al., 2000. Research on the sequence stratigraphy of China. Guangdong Science and Technology Press, Guangzhou, 1-457 (in Chinese). [45] Williams, H., Turner, S., Kelley, S., et al., 2001. Age and composition of dikes in southern Tibet: New constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology, 29 (4): 339-342. doi: 10.1130/0091-7613(2001)029<0339:AACODI>2.0.CO;2 [46] Wu, Y. Q., Cui, Z. J., Ge, D. K., et al., 1999. When the Qinghai-Xizang plateau uplift to present elevation. Scientia Geographica Sinica, 19 (6): 481-484 (in Chinese with English abstract). [47] Yin, A., Kapp, P., Murphy, M. A., et al., 1999. Significant late Neogene east-west extension in northern Tibet. Geology, 27: 787-790. [48] Yin, H. F., Zhang, K. X., Chen, N. S., et al., 2003. Peoples Republic of China regional geological report (1∶250 000) of Donggiconaghu map (I47C001002). China University of Geosciences Press, Wuhan, 1-457 (in Chinese). [49] Zhao, Z. Z., Li, Y. T., Ye, H. F., et al., 2001. Strratigraphy of the Qinghai-Tibet Plateau. Science Press, Beijing, 1-542 (in Chinese). [50] Zhen, D., Yao, C. D., 2006. Uplifting of Tibetan plateau with its environmental effects. Advances in Earth Science, 21 (5): 451-458 (in Chinese with English abstract). [51] Zhong, D. L., Ding, L., 1996. Rising process of the Qinghai-Xizang Tibet plateau and its mechanism. Science in China (Ser. D), 26 (4): 289-295 (in Chinese). [52] Zhou, Z. Y., Zhao, Z. X., Hu, Z. X., et al., 2001. Stratigraphy of the Tarim basin. Science Press, Beijing, 1-359 (in Chinese). [53] 崔之久, 高全洲, 刘耕年, 等, 1996. 夷平面、古岩溶与青藏高原隆升. 中国科学 (D辑), 26 (4): 378-386. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199604014.htm [54] 崔之久, 高全洲, 刘耕年, 等, 1998. 关于“昆仑-黄冈运动”中国科学 (D辑), 28 (1): 53-69. [55] 丁林, 钟大赉, 潘裕生, 等, 1995. 东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据. 科学通报, 40 (16): 1479-1500. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199516017.htm [56] 丁林, 2003. 西藏雅鲁藏布江缝合带古新世深水沉积和放射虫动物群的发现及对前陆盆地演化的制约. 中国科学 (D辑), 33 (1): 47-58. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200301005.htm [57] 甘肃省地质矿产局, 1997. 甘肃省岩石地层. 武汉: 中国地质大学出版社, 1-288. [58] 李国彪, 万晓樵, 其和日格, 等, 2002. 西藏岗巴-定日地区始新世化石碳酸盐岩微相及沉积环境. 中国地质, 29 (4): 401-406. doi: 10.3969/j.issn.1000-3657.2002.04.013 [59] 李海兵, 杨经绥, 2004. 青藏高原北部白垩纪隆升的证据. 地学前缘, 11 (4): 345-359. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200404002.htm [60] 李吉均, 方小敏, 马海洲, 等, 1996. 晚新生代黄河上游地貌演化与青藏高原隆起. 中国科学 (D辑), 26 (4): 316-322. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199604004.htm [61] 李吉均, 方小敏, 潘保田, 等, 2001. 新生代晚期青藏高原强烈隆起及其对周边环境的影响. 第四纪研究, 21 (5): 381-391. doi: 10.3321/j.issn:1001-7410.2001.05.001 [62] 李吉均, 文世宣, 张青松, 等, 1979. 青藏高原隆起的时代、幅度和形式的探讨. 中国科学 (D辑), (6): 608-616. [63] 李思田, 解习农, 王华, 等, 2004. 沉积盆地分析基础与应用. 北京: 高等教育出版社, 1-410. [64] 李廷栋, 1995. 青藏高原隆升的过程和机制. 地球学报, 16 (1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB501.000.htm [65] 潘桂棠, 丁俊, 姚东生, 等, 2004. 青藏高原及邻区地质图 (1∶500 000) 及说明书. 成都: 成都地图出版社, 1-133. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZCXW200710001136.htm [66] 潘桂棠, 王培生, 徐耀荣, 等, 1990. 青藏高原新生代构造演化. 北京: 地质出版社, 1-165. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201304003.htm [67] 潘裕生, 1999. 青藏高原的形成与隆升. 地学前缘, 6 (3): 153-163. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY199903020.htm [68] 青海省地质矿产局. 1997. 青海省岩石地层. 武汉: 中国地质大学出版社, 1-388. [69] 施雅凤, 李吉均, 李炳元, 等, 1998. 青藏高原晚新生代隆升与环境变化. 广州: 广东科技出版社, 1-463. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201302005.htm [70] 四川省地质矿产局. 1997. 四川省岩石地层. 武汉: 中国地质大学出版社, 1-417. [71] 孙鸿烈, 郑度, 1998. 青藏高原形成演化与发展. 广州: 广东科技出版社, 1-350. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ199906008.htm [72] 万晓樵, 1990. 西藏白垩纪—早第三纪有孔虫与特提斯-喜马拉雅海的演化. 微体古生物学报, 7 (2): 169-186. https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT199002004.htm [73] 万晓樵, 丁林, 2002. 西藏吉隆白垩纪末期浮游有孔虫的发现及其年代意义. 古生物学报, 41 (1): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX200201008.htm [74] 王国灿, 向树元, John, I. G., 等, 2003. 东昆仑东段哈拉郭勒—哈图一带中生代的岩石隆升剥露——锆石和磷灰石裂变径迹年代学证据. 地球科学——中国地质大学学报, 28 (6): 645-652. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200306010.htm [75] 王国灿, 杨巍然, 马华东, 等, 2005. 东西昆仑晚新生代以来构造隆升作用对比. 地学前缘, 12 (3): 157-166. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200503023.htm [76] 王鸿祯, 史晓颖, 王训练, 等, 2000. 中国层序地层研究. 广州: 广东科技出版社, 1-457. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200301024.htm [77] 伍永秋, 崔之久, 葛道凯, 等, 1999. 青藏高原何时隆升到现代的高度——以昆仑山垭口地区为例. 地理科学, 19 (6): 481-484. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX199906000.htm [78] 西藏自治区地质矿产局, 1997. 西藏自治区岩石地层. 武汉: 中国地质大学出版社, 1-302. [79] 新疆维吾尔自治区地质矿产局, 1999. 新疆维吾尔自治区岩石地层. 武汉: 中国地质大学出版社, 1-430. [80] 殷鸿福, 张克信, 陈能松, 等, 2003. 中华人民共和国区域地质调查报告 (比例尺1∶250 000), 冬给措纳湖幅 (I47C001002). 武汉: 中国地质大学出版社, 1-457. https://www.cnki.com.cn/Article/CJFDTOTAL-WLGY201806032.htm [81] 云南省地质矿产局, 1996. 云南省岩石地层. 武汉: 中国地质大学出版社, 1-366. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201804009.htm [82] 赵政璋, 李永铁, 叶和飞, 等, 2001. 青藏高原地层. 北京: 科学出版社, 1-542. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB202201005.htm [83] 郑度, 姚檀栋, 2006. 青藏高原隆升及其环境效应. 地球科学进展, 21 (5): 451-458. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200605001.htm [84] 钟大赉, 丁林, 1996. 青藏高原的隆起过程及其机制探讨. 中国科学 (D辑), 26 (4): 289-29. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199604000.htm [85] 周志毅, 赵治信, 胡兆珣, 等, 2001. 塔里木盆地各纪地层. 北京: 科学出版社, 1-359. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200603007.htm