On Reefs in Association with Marine Oilfields: Actuality, Problems and Prospects
-
摘要: 生物礁是良好的油气聚集场所.几十年来我国在生物礁及其含油气性研究、生物礁发育分布规律及其控制因素研究等方面均取得了丰硕的成果, 油气区隐伏生物礁的地球物理识别与预测方法也日趋成熟, 生物礁储层形成机理与预测研究进一步深入.油气区生物礁研究中仍存在一些问题: 一是生物礁基础研究综合程度不够; 二是生物礁成油系统研究薄弱; 三是生物礁分布规律与地质预测精细程度不够.油气区生物礁研究的发展趋势: 一是生物礁基础研究将向综合的生物礁生态-沉积体系研究以及生物礁地球生物学研究方向发展; 二是生物礁与油气成藏研究结合将更加紧密; 三是油气区生物礁的研究手段向多方法的交互验证与集成研究过渡; 四是生物礁储层预测与描述技术将得到进一步发展.Abstract: Reefs were believed to be favorable rocks for hydrocarbon accumulation. Great progress was made in the past decades through the investigation of reefs in China; they include the distributions, the controlling factors and the oil-bearing properties of the reefs. The identification and the prediction of underlying reefs were widely carried out by geophysical techniques, and were more and more successful due to the enhanced understandings of both the geophysical features of the reefs and the mechanisms of the reef formation. Some issues related to the reef systems, however, need to be investigated and strengthened in the future. The comprehensive investigation of a reef awaits an integrated study on sedimentology, ecology, in particular geobiology. The deepgoing description and the elevated understanding of reef distributions help to enhance the prediction of reef reservoirs, and to acknowledge their relation with the petroleum-generation system. Multiple techniques and integrated methodology would be widely explored and cross-checked to enhance the prediction probability of underlying reefs in association with oil and gas.
-
Key words:
- reefs /
- geobiology /
- oil and gas reservoir /
- petroleum-generation system
-
表 1 我国地史时期生物礁的分布及含油气性
Table 1. Spatiotemporal distributions of organic reefs through geohistory in China and their relations to oil and gas
-
[1] Copper, P., 2002. Reef development at the Frasnian/Famen-nian mass extinction boundary. Palaeogeography, Palaeocli matology, Palaeoecology, 181 (1-3): 27-65. doi: 10.1016/S0031-0182(01)00472-2 [2] Doherty, P. D., Soreghan, G. S., Castagna, J. P., 2002. Outcrop-based reservoir characterization: Acomposite phylloid-algalmound, western Orogrande basin (New Mexico). AAPG Bulletin, 86 (5): 779-795. [3] Fan, J. S., 1996. The ancient organic reefs of China and theirrelations to oil and gas. Petroleum Industry Press, Bei-jing (in Chinese). [4] Gong, Y. M., Xu, R., Tang, Z. D., et al., 2005. Relationships between bacterial-agal proliferating and mass extinctionin the Late Devonian Fransnian-Famennian transition: Enlightening from carbon isotopes and molecular fos-sils. Science in China (Series D), 48 (10): 1656-1665. [5] Kiessling, W., 2001. Paleocli matic significance of Phanerozoicreefs. Geology, 29 (8): 751-754. doi: 10.1130/0091-7613(2001)029<0751:PSOPR>2.0.CO;2 [6] Li, Z. H., Cui, Z. H., Li, L. T., 2004. Influence of fracturedslope-break zone on sedi mentary sequence: Cases of Or-dovician marine carbonate rock in the western marginarea of Ordos basin. Marine Origin Petroleum Geolo-gy, 9 (1-2): 31-36 (in Chinese with English ab-stract). [7] Liu, C. Y., Lin, C. S., Wu, M. B., et al., 2007. Characteris-tics of spatiotemporal distributions of reefs in China andtheir geological significance. Global Geology, 26 (1): 44-51 (in Chinese with English abstract). [8] Liu, H., Wang, Y. M., 2005. Early Paleozoic palaeogeomor-phology—Characteristics of slope break zones and theircontrol on stratigraphic-lithologic traps in Tari mbasin. Oil & Gas Geology, 26 (3): 297-304 (in Chinese withEnglish abstract). [9] Liu, S., Guo, X. S., Ma, Z. J., et al., 2006. Seismic response characteristic and hydrocarbon exploration perspectiveof reef flat facies. Geophysical Prospecting for Petrole-um, 45 (5): 452-458 (in Chinese with English ab-stract). [10] Luo, J. N., Zhu, Z. F., Xie, Y., et al., 2004. The biohermitesin the Qiangtang basin and their sedi mentary model. Sedi mentary Geology and Tethyan Geology, 24 (2): 51-62 (in Chinese with Enlglish abstract). [11] Magoon, L. B., 1992. Identified petroleumsystems within theUnited States. In: Magoon, L. B., ed., The prtroleumsystem-status of research and methods. USGS Bulletin, 2007: 2-11. [12] Pomar, L., 1991. Reef geometries, erosion surfaces and high-frequency sea-level changes, Upper Miocene reef com-plex, Mallorca, Spain. Sedimentology, 38: 243-269. doi: 10.1111/j.1365-3091.1991.tb01259.x [13] Reinhold, C., 1998. Multiple episodes of dolomitization anddolomite recrystallization during shallow burial in Up-per Jurassic shelf carbonates: Eastern Swabian Alb, southern Germany. Sedimentary Geology, 121 (1-2): 71-95. doi: 10.1016/S0037-0738(98)00077-3 [14] Ren, X. G., Luo, L., Yao, S. X., et al., 1999. Log responsesto bio-reef in the east of Sichuan and its identificationmode. Well Logging Technology, 23 (3): 190-193 (inChinese with English abstract). [15] Riding, R., 2002. Structure and composition of organic reefsand carbonate mud mounds: Concepts and categories. Earth Science Reviews, 58 (1-2): 163-231. doi: 10.1016/S0012-8252(01)00089-7 [16] Shen, A. J., Chen, Z. L., Shou, J. F., 1999. Permian reef oiland gas pool in southern China controlled by relative sealevel changes. Acta Sedi mentologica Sinica, 17 (3): 367-373 (in Chinese with English abstract). [17] Toscano, M. A., Lundberg, J., 1998. Early Holocene sea-levelrecord fromsubmergedfossil reefs onthe southeast Floridamargin. Geology, 26 (3): 255-258. doi: 10.1130/0091-7613(1998)026<0255:EHSLRF>2.3.CO;2 [18] Webb, G. E., 2005. Quantitative analysis and paleoecology ofearliest Mississippian microbial reefs, Gudman Forma-tion, Queensland, Australia: Not just post-disaster phe-nomena. Journal of Sedimentary Research, 75 (5): 877-896. doi: 10.2110/jsr.2005.068 [19] Wood, R., 2001. Are reefs and mud mounds really so differ-ent? Sedimentary Geology, 145 (3-4): 161-171. doi: 10.1016/S0037-0738(01)00146-4 [20] Wu, Y. S., Fan, J. S., 1991. Definition and classification ofreefs. Oil & Gas Geology, 12 (3): 346-349 (in Chinesewith English abstract). [21] Wylie, A. S., Wood, J. R., 2004. well-log tomography and3-Di maging of core andlog-curve amplitudes in a Niagar-an reef, Belle River Mills field, St. Clair County, Michi-gan, United States. AAPG Bulletin, 89 (4): 409-433. [22] Xie, S. C., Gong, Y. M., Tong, J. N., et al., 2006. Transition from paleontology to geobiology. Chinese Science Bulle-tin, 51 (19): 2327-2336 (in Chinese). [23] Xu, G. Q., Wu, W. H., Wu, H. Z., et al., 2006. Seismic detec-tion and distribution of reef-bank complex in LanglitageFormation of Upper Ordovician, Hetian River area, Tari mbasin. J. Mineral. Petrol. , 26 (2): 80-86 (in Chinese withEnglish abstract). [24] Xu, Q., Liu, B. J., He, H. Y., et al., 2004. Sequence stratig-raphy lithofacies and paleogeography mapping for theLate Permian reef in Sichuan basin. Acta Petrolei Sini-ca, 25 (2): 47-50 (in Chinese with English abstract). [25] Xu, R., Gong, Y. M., Tang, Z. D., 2006. Blooming of bacteri-a and algae: Possible killer of the Devonian Frasnian-Fa-mennian mass extinction? Earth Science—Journal of China University of Geosciences, 31 (6): 787-797 (inChinese with English abstract). [26] Yang, X. N., Sheng, A. J., Chen, Z. L., et al., 2002. Genetictypes for petroliferous System of organic reefs in thePermian system of South China. Acta Petrolei Sinica, 23 (3): 6-10 (in Chinese with Enlglish abstract). [27] Zeng, D. Q., Liu, B. W., Huang, Y. M., 1988. Reefs throughgeological ages in China. Petroleum Industry Press, Bei-jing (in Chinese). [28] Zhong, J. H., Wen, Z. F., Li, Y., et al., 2005. Organic reefsstudy: Concept, classifiction, characteristics, history and de-velopment. Geological Review, 51 (3): 288-300 (in Chi-nese with English abstract). [29] 范嘉松, 1996. 中国生物礁与油气. 北京: 石油工业出版社. [30] 龚一鸣, 徐冉, 汤中道, 等, 2005. 晚泥盆世F-F之交菌藻微生物繁荣与集群绝灭的关系: 来自碳同位素和分子化石的启示. 中国科学D辑, 48 (2): 140-148. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200502004.htm [31] 李振宏, 崔泽宏, 李林涛, 2004. 断裂坡折带对海相沉积层序的影响——以鄂尔多斯盆地西缘奥陶系海相碳酸盐岩为例. 海相油气地质, 9 (1-2): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ2004Z1004.htm [32] 刘春燕, 林畅松, 吴茂炳, 等, 2007. 中国生物礁时空分布特征及其地质意义. 世界地质, 26 (1): 44-51. doi: 10.3969/j.issn.1004-5589.2007.01.008 [33] 刘豪, 王英民, 2005. 塔里木盆地早古生代古地貌——坡折带特征及对地层岩性圈闭的控制. 石油与天然气地质, 26 (3): 297-304. doi: 10.3321/j.issn:0253-9985.2005.03.006 [34] 刘殊, 郭旭升, 马宗晋, 等, 2006. 礁滩相地震响应特征和油气勘探远景. 石油物探, 45 (5): 452-458. doi: 10.3969/j.issn.1000-1441.2006.05.004 [35] 罗建宁, 朱忠发, 谢渊, 等, 2004. 羌塘盆地生物礁岩特征与沉积模式. 沉积与特提斯地质, 24 (2): 51-62. doi: 10.3969/j.issn.1009-3850.2004.02.009 [36] 任兴国, 罗利, 姚声贤, 等, 2000. 川东地区生物礁测井预测方法研究. 石油勘探与开发, 27 (1): 41-43. doi: 10.3321/j.issn:1000-0747.2000.01.013 [37] 沈安江, 陈子炓, 寿建峰, 1999. 相对海平面升降与中国南方二叠纪生物礁油气藏. 沉积学报, 17 (3): 367-373. doi: 10.3969/j.issn.1000-0550.1999.03.006 [38] 吴亚生, 范嘉松, 1991. 生物礁的定义和分类. 石油与天然气地质, 12 (3): 346-349. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT199103013.htm [39] 谢树成, 龚一鸣, 童金南, 等, 2006. 从古生物学到地球生物学的跨越. 科学通报, 51 (19): 2327-2336. doi: 10.3321/j.issn:0023-074X.2006.19.018 [40] 徐国强, 吴伟航, 武恒志, 等, 2006. 塔里木盆地和田河地区上奥陶统礁滩沉积体地震识别及其发育分布规律. 矿物岩石, 26 (2): 80-86. doi: 10.3969/j.issn.1001-6872.2006.02.013 [41] 徐强, 刘宝珺, 何汉漪, 等, 2004. 四川晚二叠世生物礁层序地层岩相古地理编图. 石油学报, 25 (02): 47-50. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200402008.htm [42] 徐冉, 龚一鸣, 汤中道, 2006. 菌藻类繁盛: 晚泥盆世大灭绝的疑凶? 地球科学——中国地质大学学报, 31 (6): 787-797. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200606006.htm [43] 杨晓宁, 沈安江, 陈子炓, 等, 2002. 中国南方二叠纪生物礁油气系统成因类型. 石油学报, 23 (3): 6-10. doi: 10.3321/j.issn:0253-2697.2002.03.002 [44] 曾鼎乾, 刘炳温, 黄蕴明, 1988. 中国各地质历史时期的生物礁. 北京: 石油工业出版社. [45] 钟建华, 温志峰, 李勇, 等, 2005. 生物礁的研究现状与发展趋势. 地质论评, 51 (3): 288-300. doi: 10.3321/j.issn:0371-5736.2005.03.009