• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    海相烃源岩的正反演对比分析

    解习农 殷鸿福 谢树成

    解习农, 殷鸿福, 谢树成, 2007. 海相烃源岩的正反演对比分析. 地球科学, 32(6): 861-867.
    引用本文: 解习农, 殷鸿福, 谢树成, 2007. 海相烃源岩的正反演对比分析. 地球科学, 32(6): 861-867.
    XIE Xi-nong, YIN Hong-fu, XIE Shu-cheng, 2007. Comparison on Forward and Inverse Analysis Methods of Marine Hydrocarbon Source Rocks. Earth Science, 32(6): 861-867.
    Citation: XIE Xi-nong, YIN Hong-fu, XIE Shu-cheng, 2007. Comparison on Forward and Inverse Analysis Methods of Marine Hydrocarbon Source Rocks. Earth Science, 32(6): 861-867.

    海相烃源岩的正反演对比分析

    基金项目: 

    中国石油化工股份有限公司海相油气勘探前瞻性项目 G0800-06-ZS-319

    详细信息
      作者简介:

      解习农(1963-), 男, 教授, 主要从事能源地质与盆地流体的教学和科研工作.E-mail: xnxie@cug.edu.cn

    • 中图分类号: P539.2;P618.130

    Comparison on Forward and Inverse Analysis Methods of Marine Hydrocarbon Source Rocks

    • 摘要: 海相优质烃源岩有效的评价体系是海相地层油气勘探开发中的关键问题之一.沉积盆地内保存的残余有机质从生物物质到烃源岩的演化过程经历了两个阶段, 即从生物物质到沉积有机质的形成阶段和从沉积有机质到残余有机质的烃源岩形成阶段, 后者包括沉积有机质在未熟阶段经历生物化学作用成为埋藏有机质和在成熟-过成熟阶段经历热解作用成为残余或风化残余有机质两个亚阶段.烃源岩反演分析是利用残余或风化残余有机质的量来推断埋藏有机质的量或者原始生烃潜力.而正演分析则是根据沉积物沉积环境、生物物质及其介质物理化学条件特征运用地球生态学、地球微生物学、分子地球生物学和生物地球化学方法推断沉积有机质的量, 甚至推断埋藏有机质的量, 进而评估烃源岩的原始生烃潜力, 也就是利用生物生产力和保存环境等综合分析沉积有机质的量.正反演对比分析相互验证和相互补充, 更好地揭示了烃源岩基本特征, 为海相优质烃源岩的预测和评价提供了有效的研究方法.

       

    • 图  1  烃源岩中生物有机质演化过程及成岩阶段划分

      Fig.  1.  Evolution and diagenesis stages of sedimentary organic matters in the source rocks

      图  2  正反演方法应用范围对比

      Fig.  2.  Comparison between forward and inverse analysis methods

    • [1] Bralower, T. J., Thierstein, H. R., 1984. Low productivityand slow deepwater circulation in Mid-Cretaceousoceans. Geology, 12: 614-618.
      [2] Calvert, S. E., 1987. Ocean graphic controls onthe accumula-tion of organic matter in marine sedi ments. In: Book, J., Fleet, A., eds., Marine petroleum source rock. Black-well Scientific, London, 137-151.
      [3] Calvert, S. E., Pedersen, T. F., Naidu, P. D., et al., 1995. Onthe organic carbon maxi mumon the continental slope ofthe eastern Arabian Sea. Journal of Marine Research, 53: 269-296. doi: 10.1357/0022240953213232
      [4] Chen, J. F., Zhang, S. C., Sun, S. L., et al., 2006. Main fac-tors influencing marine carbonate source rock forma-tion. Acta Geologica Sinica, 80 (3): 467-472 (in Chi-nese with English abstract).
      [5] Chen, R. S., 1994. Geology of petroleum and natural gas. China University of Geosciences Press, Wuhan (in Chi-nese).
      [6] Dai, J. X., Wang, T. D., Dai, H. M., et al., 2000. Origin oflarge-scale carbonate gasfields in China (abstract). Ma-rine Oil and Gas Geology, 5 (1-2): 12-13 (in Chi-nese).
      [7] Demaison, G. J., Moore, G. T., 1980. Anoxic environmentsand oil source bed genesis. AAPG Bulletin, 64 (8): 1179-1209.
      [8] Halbach, M., Koschinsky, A., Halbach, P., 2001. Report onthe discovery of Gallionella ferruginea from an activehydrothermal fieldinthe deep sea. International Ridge-Crest Research, 10 (1): 18-20.
      [9] Haymon, R. M., Fomari, D. J., Von Damm, K. L., et al., 1993. Volcanic eruption of the mid-ocean ridge along theEast Pacific Rise crest at9°45-52′N: Direct submersi-ble observations of seafloor phenomena associated withan eruption event in April, 1991. Earth and PlanetaryScience Letters, 119 (1-2): 85-101. doi: 10.1016/0012-821X(93)90008-W
      [10] Henderson, G. M., 2002. New oceanic proxies for paleocli-mate. Earth and Planetary Science Letters, 203 (1): 1-13. doi: 10.1016/S0012-821X(02)00809-9
      [11] Hu, J. Y., Huang, D. F., 1991. Principle and theory of conti-nental petroleum in China. Petroleum Industry Press, Beijing (in Chinese).
      [12] Hunt, J. M., 1979. Petroleum geochemistry and geology. Freeman and Company, San Francisco, 524.
      [13] Hunt, J. M., 1995. Petroleum geochemistry and geology. W. H. Freeman and Company, New York.
      [14] Jin, Z. J., Zhang, Y. W., Chen, S. P., 2005. Wave process oftectonic and sedi ment in Tari m basin. Science in China (Ser. D), 35 (6): 530-539 (in Chinese).
      [15] Kump, L. R., Arthur, M. A., 1999. Interpreting carbon-iso-tope excursions: Carbonates and organic matter. Chemi-cal Geology, 161 (1-3): 181-198. doi: 10.1016/S0009-2541(99)00086-8
      [16] Liang, D. G., Chen, J. P., 2005. Oil-source correlations forhigh and over matured marine source rocks in SouthChina. Petroleum Exploration and Development, 32 (2): 8-14 (in Chinese with English abstract).
      [17] Lin, L., 2001. The mineralization of organism and organicmatter inthe Laerma gold deposit. Bulletinof Mineral-ogy, Petrology and Geochemistry, 20 (2): 79-83 (inChinese with English abstract).
      [18] Ma, Y. S., 2006. Cases of discovery and exploration of marinefields in China (Part6): Puguang gas field in Sichuanbasin. Marine Origin Petroleum Geology, 11 (2): 35-40 (in Chinese with English abstract).
      [19] Meyers, S. R., Sageman, B. B., Lyons, T. W., 2003. The roleof sulfate reduction in organic matter degradation andmolybdenum accumulation: Theoretical framework andapplication to a Cretaceous organic matter burial event. Abstracts with Programs—Geological Society of A-merica, 35 (6): 82.
      [20] Mucci, A., Sundby, B., Gehlen, M., et al., 2000. The fate ofcarbon in continental shelf sedi ments of eastern Cana-da: A case study. Deep Sea Research PartⅡ: TopicalStudies in Oceanography, 47 (3-4): 733-760. doi: 10.1016/S0967-0645(99)00124-1
      [21] Pedersen, T. F., Calvert, S. E., 1990. Anoxia vs productivi-ty: What controls the formation of organic-carbon-richsedi ments and sedi mentary rock?AAPG Bulletin, 74 (4): 454-466.
      [22] Qin, J. Z., 2005. Hydrocarbon source rocks in China. Science Press, Beijing (in Chinese).
      [23] Rhoads, D. C., Morse, J. W., 1971. Evolutionary and ecologic significance of oxygen-deficient marine basins. Lethaia, 4 (4): 413-428. doi: 10.1111/j.1502-3931.1971.tb01864.x
      [24] Rullkotter, J. Z., 1999. Organic matter: The driving force forearly diagenesis. In: Schulz, H. D., Zabel, M., eds., Ma-rine geochenisrty. Springer-Verlag, Heidelberg, 129-172.
      [25] Schulte, S., Mangelsdorf, K., Rullkoetter, J., 2000. Organicmatter preservation on the Pakistan continental margin as revealed by biomarker geochemistry. Organic Geo-chemistry, 31 (10): 1005-1022. doi: 10.1016/S0146-6380(00)00108-X
      [26] Summit, M., Baross, J. A., 2001. Anovel microbial habitat inthe mid-ocean ridge subseafloor. PNAS, 98 (5): 2158-2163. doi: 10.1073/pnas.051516098
      [27] Sun, S. L., 1999. Organic geochemical characters and metallogen-esis of Xicheng Pb-Zn orefield, Gansu, China. Acta Geologi-ca Gansu, 8 (2): 58-64 (in Chinese with English abstract).
      [28] Van de Schootbrugge, B., Kuhn, O., Adatte, T., et al., 2003. Decoupling of P-and Corg-burialfollowing Early Cretaceous (Valanginian-Hauterivian) platform drowning along theNW Tethyan margin. Palaeogeography, Palaeoclimatolo-gy, Palaeoecology, 199 (3-4): 315-331. doi: 10.1016/S0031-0182(03)00540-6
      [29] Voigt, S., Gale, A. S., Voigt, T., 2006. Sea-level change, car-bon cycling and palaeocli mate during the Late Cenoma-nian of northwest Europe: An integrated palaeoenviro-mental analysis. Cretaceous Research, 27 (6): 836-858. doi: 10.1016/j.cretres.2006.04.005
      [30] Xie, S. C., Gong, Y. M., Tong, J. N., et al., 2006. Advance-ment from paleontology to geobiology. Chinese Science Bulletin, 51 (19): 2327-2336 (in Chinese). doi: 10.1007/s11434-006-2111-3
      [31] Xie, S. C., Pancost, R. D., Yin, H. F., et al., 2005. Two epi-sodes of microbial change coupled with Permo/Triassicfaunal mass extinction. Nature, 434 (7032): 494-497. doi: 10.1038/nature03396
      [32] Xie, S. C., Yin, H. F., Xie, X. N., et al., 2007. Onthe geobiolog-ical evaluation of hydrocarbon source rocks. Earth Sci-ence—Journal of China University of Geosciences, 32 (6): 727-740 (in Chinese with English abstract).
      [33] Yin, H. F., Yang, F. Q., Xie, S. C., et al., 2004. Biogeology. Science and Technology Press of Hubei, Wuhan (inChinese).
      [34] 陈践发, 张水昌, 孙省利, 等, 2006. 海相碳酸盐岩优质烃源岩发育的主要影响因素. 地质学报, 80 (3): 467-472. doi: 10.3321/j.issn:0001-5717.2006.03.021
      [35] 陈荣书, 1994. 石油及天然气地质学. 武汉: 中国地质大学出版社.
      [36] 戴金星, 王廷栋, 戴鸿鸣, 等, 2000. 中国碳酸盐岩大型气田的起源(摘要). 海相油气地质, 5 (1-2): 12-13. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ2000Z1005.htm
      [37] 胡见义, 黄第藩, 1991. 中国陆相石油地质理论基础. 北京: 石油工业出版社.
      [38] 金之钧, 张一伟, 陈书平, 2005. 塔里木盆地构造-沉积波动过程. 中国科学(D辑), 35 (6): 530-539. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200506005.htm
      [39] 梁狄刚, 陈建平, 2005. 中国南方高、过成熟区海相油源对比问题. 石油勘探与开发, 32 (2): 8-14. doi: 10.3321/j.issn:1000-0747.2005.02.002
      [40] 林丽, 2001. 拉尔玛金矿生物-有机质成矿作用. 矿物岩石地球化学通报, 20 (2): 79-83. doi: 10.3969/j.issn.1007-2802.2001.02.002
      [41] 马永生, 2006. 中国海相油气田勘探实例之六: 四川盆地普光大气田的发现与勘探. 海相油气地质, 11 (2): 35-40. doi: 10.3969/j.issn.1672-9854.2006.02.006
      [42] 秦建中, 2005. 中国烃源岩. 北京: 科学出版社.
      [43] 孙省利, 1999. 西成铅锌矿田有机地球化学特征及成矿作用. 甘肃地质学报, 8 (2): 58-64. https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ199902007.htm
      [44] 谢树成, 龚一鸣, 童金南, 等, 2006. 从古生物学到地球生物学的跨越. 科学通报, 51 (19): 2327-2336. doi: 10.3321/j.issn:0023-074X.2006.19.018
      [45] 谢树成, 殷鸿福, 解习农, 等, 2007. 地球生物学方法与海相优质烃源岩形成的正演和评价. 地球科学——中国地质大学学报, 32 (6): 727-740. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200706002.htm
      [46] 殷鸿福, 杨逢清, 谢树成, 等, 2004. 生物地质学. 武汉: 湖北科学技术出版社.
    • 加载中
    图(2)
    计量
    • 文章访问数:  2771
    • HTML全文浏览量:  120
    • PDF下载量:  197
    • 被引次数: 0
    出版历程
    • 收稿日期:  2007-08-12
    • 刊出日期:  2007-11-25

    目录

      /

      返回文章
      返回