On the Geobiological Evaluation of Hydrocarbon Source Rocks
-
摘要: 烃源岩存在生烃和排烃过程, 高-过成熟区还叠加了烃源岩有机质的强烈改造和破坏, 从海相地层残余有机质出发评价烃源岩的反演方法需要进一步完善.以探索生命系统与地球系统相互作用为主题的地球生物学为正演烃源岩形成的动力学过程提供了理论依据.分子地球生物学、地球微生物学、地球生态学和生物地球化学等地球生物学的各分支学科(要素) 为恢复烃源岩形成时的生产力及其组成、沉积有机质的量和类型、有机埋藏量及其过程和类型等提供了技术方法支撑, 分别论述了如何利用地球生物学的技术方法来定量计算原始生产力、沉积有机质和埋藏有机质.表征地球生物学过程的地球生物相则综合和集成了烃源岩生物相、有机相和沉积相的相关信息, 包含了生境型(群落型)、生产力和有机埋藏等定量化指标, 它为建立优质烃源岩的地球生物学评价体系服务.通过烃源岩实验模拟得出的有机质恢复系数对残余有机碳进行恢复, 并与地球生物学得出的埋藏有机质进行量的对比, 由此实现地球生物学方法与传统反演方法的接口和校正.Abstract: Hydrocarbon source rocks are characterized by the hydrocarbon discharge, and the alteration and variation in organic compositions and organic content due to the enhanced thermal maturation. These variations throw constraints on the application of the conventional inversion evaluation of hydrocarbon potential by assessing the residual organic matter left in source rocks. Geobiology, probing the interaction between the life system and the earth system, provides new principles in deciphering the whole dynamic processes related to the organic evolution history from living biomass to organic burial. Geobiological subdisciplines, including molecular geobiology, geomicrobiology, geoecology and biogeochemistry, offer new methodology and techniques to estimate the abundance and the composition of biomass, sedimentary organics and preserved organic matter, which are discussed here in detail. Geobiofacies, proposed herein, is terminologized to define the geobiological dynamic processes through the combination of biofacies with organic facies and sedimentary facies, and expressed by the biohabitat types, paleoproductivity and organic burial capacity. Geobiofacies is identified as a useful means to create the geobiological evaluation system, which in turn rectifies the conventional evaluation system for the marine source rocks.
-
表 1 地球生物学的分支学科
Table 1. Subdivision of geobiology
-
[1] Amend, J. P., Fedo, C., Cady, S. L., et al., 2001. Geobiology and geomicrobiology in the 21st century. GSA Today, 11: 10. [2] Banerjee, A., Jha, M., Mittal, A. K., et al., 2000. The effec-tive source rocks in the north Cambay basin, India. Ma-rine and Petroleum Geology, 17: 1111-1129. doi: 10.1016/S0264-8172(00)00049-0 [3] Banfield, J. F., Nealson, K. H., 1997. Geomicrobiology: Interac-tions between microbes and minerals. In: Reviewin mineral-ogy. Mineralogical Society of America, Washington D. C. . [4] Beard, B. L., Johnson, C. M., 2004. Feisotope variations in the modern and ancient Earth and other planetary bodies. Re-views in Mineralogy and Geochemistry, 55: 319-357. doi: 10.2138/gsrmg.55.1.319 [5] Brocks, J. J., Logan, G. A., Buick, R., et al., 1999. Archeanmolecular fossils and the early rise of eukaryotes. Sci-ence, 285: 1033-1036. doi: 10.1126/science.285.5430.1033 [6] Brocks, J. J., Pearson, A., 2005. Building the biomarker tree of life. Rev. Mineral. Geochem. , 59: 233-258. doi: 10.2138/rmg.2005.59.10 [7] Clegg, H., Wilkes, H., Horsfield, B., 1997. Carbazole distri-butions in carbonate and clastic source rocks. Geochimi-caet Cosmochimica Acta, 61: 5335-5345. doi: 10.1016/S0016-7037(97)00304-9 [8] Demaison, G. J., Moore, G. T., 1980. Anoxic environments and oil source bed genesis. Organic Geochemistry, 2: 9-31. doi: 10.1016/0146-6380(80)90017-0 [9] Dutkiewicz, A., Volk, H., Ridley, J., et al., 2003. Biomark-ers, brines, and oil in the Mesoproterozoic, Roper Super-basin, Australia. Geology, 31 (11): 981-984. doi: 10.1130/G19754.1 [10] Ercegovac, M., Kostic, A., 2006. Organic facies and palyno-facies: Nomenclature, classification and applicability for petroleum source rock evaluation. International Journalof Coal Geology, 68: 70-78. doi: 10.1016/j.coal.2005.11.009 [11] Fildani, A., Hanson, A. D., Chen, Z. Z., et al., 2005. Geo-chemical characteristics of oil and source rocks and im-plications for petroleum systems, Talara basin, north-west Peru. AAPG Bulletin, 89: 1519-1545. doi: 10.1306/06300504094 [12] Glikson, M., 2001. The application of electron microscopy and microanalysis in conjunction with organic petrology to fur-ther the understanding of organic-mineral association: Ex-amples from Mount Isa and McArthur basins, Australia. International Journal of Coal Geology, 47: 139-159. doi: 10.1016/S0166-5162(01)00039-8 [13] Grice, K., Cao, C. Q., Love, G. D., et al., 2005. Photic zoneeuxinia during the Permian-Triassic superanoxic event. Science, 307: 706-709. doi: 10.1126/science.1104323 [14] Gu, S. Z., Zhang, M., Gui, B., et al., 2007. An attempt to quantitatively reconstruct the primary productivity by counting the radiolarian fossils in cherts from the latest Permian Dalong Formation in southwestern China. Frontiers of Earth Science in China, in press. [15] Henderson, G. M., 2002. New oceanic proxies for paleocli-mate. Earth and Planetary Science Letters, 203: 1-13. doi: 10.1016/S0012-821X(02)00809-9 [16] Holbourn, A. E., Kuhnt, W., Söding, E., 2001. Atlantic pa-leobathymetry, paleo productivity and paleocirculation in the late Albian: The benthic foraminiferal record. Palaeogeography, Palaeoclimatology, Palaeoecology, 170: 171-196. doi: 10.1016/S0031-0182(01)00223-1 [17] Hu, C. Y., Pan, H. X., Ma, Z. W., et al., 2007. Iron abun-dance in the marine carbonate as a proxy of the paleo-productivity in hydrocarbon source rocks. Earth Sci-ence—Journal of China University of Geosciences, 32 (6): 755-758 (in Chinese with English abstract). [18] Huang, J. H., Luo, G. M., Bai, X., et al., 2007. The organic fraction of the total carbon burial flux deduced from carbon isotopes across the Permo-Triassic boundary at Meishan, Zhejiang Prov-ince. Earth Science—Journal of China University of Geosci-ences, 32 (6): 767-773 (in Chinese with English abstract). [19] Huc, A. Y., Bertrand, P., Stow, D. A. V., 2000. Depositional processes of source rocks in deep offshore settings: Quater-nary analogs. In: Annual Meeting Expanded Abstracts-A-merican Association of Petroleum Geologists, 70. [20] Ibach, L. E. J., 1982. Relationship between sedimentation rate and total organic carbon content in ancient marine sediments. AAPG Bulletin, 66: 170-188. [21] Jin, Z. J., Zhang, Y. W., Chen, S. P., 2005. Fluctuating tec-tonic and sedimentary processes in Tarim basin. Science in China (Series D), 35 (6): 530-539 (in Chinese). [22] Jorissen, F. J., Rohling, E. J., 2000. Faunal prespectives on paleo productivity. Marine Micropaleontology, 40 (3): 131-134. doi: 10.1016/S0377-8398(00)00035-9 [23] Kang, Y. Z., et al., 2004. Distribution of the oil and gas in the main basins in China and the exploration experi-ence. Science and Technology Press of Xinjiang, Urumqi (in Chinese). [24] Katz, B. J., 2005. Controlling factors on source rock develop-ment: A review of productivity, preservation, and sedi-mentation rate. In: Harris, N. B., ed., The deposition of organic-carbon-rich sediments: Models, mechanisms, and consequences. Special Publication-Society for Sedi-mentary Geology, 82: 7-16. [25] Knoll, A. H., 2003. The geological consequences of evolu-tion. Geobiology, 1: 3-14. doi: 10.1046/j.1472-4669.2003.00002.x [26] Knoll, A. H., Hayes, J. M., 1997. Geobiology: Articulating a concept. In: Lane, R. H., Lipps, J., Steininger, F. F., et al., eds., Paleontology in the 21st century: Frankfurt, international Senckenberg conference. Kleine Sencken-berg, 25: 105-108. [27] Knoll, A. H., Hayes, J. M., 2000. Geobiology: Problems and prospects. In: Lane, R. H., Steininger, F. F., Kaesler, R. L., et al., eds, Fossils and the future: Paleontology in the 21st century. Senckenberg-Buch, 74: 149. [28] Kump, L. R., Arthur, M. A., 1999. Interpreting carbon iso-tope excursions: Carbonates and organic matter. Chemi-cal Geology, 161: 181-198. doi: 10.1016/S0009-2541(99)00086-8 [29] Kuypers, M. M. M., van Breugel, Y., Schouten, S., et al., 2004. N2-fixing cyanobacteria supplied nutrient N for Cretaceousoceanic anoxic events. Geology, 32: 853-856. [30] Lash, G. G., Engelder, T., 2005. An analysis of horizontal micro-cracking during catagenesis: Example from the Catskill Del-ta complex. AAPG Bulletin, 89: 1433-1449. doi: 10.1306/05250504141 [31] Leythaeuser, D., 1988. Geochemical effects of primary migrationof petroleum in Kimmeridge source rocks from Brae Field area, North Sea, In: Gross composition of C15+ saturated hy-drocarbons. Geochim. Cosmochim. Acta, 52 (6): 701-713. [32] Liang, D. G., Chen, J. P., 2005. Source and oil correlation in the high-post mature marine strata in China. Petroleum Exploration and Exploitation, 32 (4): 8-14 (in Chi-nese with English abstract). [33] Ma, Y. S., 2006. Exploration of marine oil and gas fields in China: Exemplified by the Puguang large gas field in Si-chuan basin. Marine Oil and Gas Geology, 11 (2): 35-40 (in Chinese with English abstract). [34] Mucci, A., Sundby, B., Gehlen, M., et al., 2000. The fate of carbon in continental shelf sediments of eastern Cana-da: A case study. Deep-Sea Research Ⅱ 47, 733-760. [35] Noffke, N., 2005. Geobiology—A holistic scientific disci-pline. Palaeogeography, Palaeoclimatology, Palaleo-ecology, 219: 1-3. doi: 10.1016/j.palaeo.2004.10.010 [36] Parrish, J. T., 1982. Upwelling and petroleum source beds with reference to Palaeozoic. AAPG Bulletin, 66: 750-774. [37] Pedersen, T. F., Calvert, S. E., 1990. Anoxia versus produc-tivity: What controls the formation of organic-carbon-rich sediments and sedimentary rock? AAPG Bulletin, 74: 454-466. [38] Pennisi, E., 2002. Geobiologists: As diverse as the bugs they study. Science, 296: 1058-1060. doi: 10.1126/science.296.5570.1058 [39] Priscu, J. C., Adams, E. E., Lyons, W. B., et al., 1999. Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science, 286: 2141-2144. doi: 10.1126/science.286.5447.2141 [40] Qin, J. Z., 2005. Source rocks in China. Science Press, Beijing (in Chinese). [41] Qin, J. Z., Zheng, L. J., Tenger, 2007. Study on restitution coefficient of original content of total organic carbon for high mature marine source rocks. Earth Science—Jour-nal of China University of Geosciences, 32 (6): 853-860 (in Chinese with English abstract). [42] Rabbani, A. R., Kamali, M. R., 2005. Source rock evaluation and petroleum geochemistry, off shore SW Iran. Journal of Petroleum Geology, 28: 413-428. doi: 10.1111/j.1747-5457.2005.tb00091.x [43] Rasmussen, B., 2005. Evidence for pervasive petroleum gen-eration and migration in 3.2 and 2.63 Ga shales. Geolo-gy, 33: 497-500. doi: 10.1130/G21316.1 [44] Riding, R., Liang, L., 2005. Geobiology of microbial carbonates: Metazoan and seawater saturation state influences on secu-lar trends during the Phanerozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 219: 101-115. doi: 10.1016/j.palaeo.2004.11.018 [45] Riediger, C., Carrelli, G. G., Zonneveld, J. P., 2004. Hydro-carbon source rock characterization and thermal maturi-ty of the Upper Triassic Baldonnel and Pardonet forma-tions, northeastern British Columbia, Canada. Bulletin of Canadian Petroleum Geology, 52: 277-301. doi: 10.2113/52.4.277 [46] Severmann, S., Larsen, O., Palmer, M. R., et al., 2002. Theisotopic signature of Fe-mineralization during early dia-genesis. Geochimicaet Cosmochimica Acta, 66: A698. [47] Sharaf, L. M., 2003. Source rock evaluation and geochemistry of condensates and natural gases, offshore Nile Delta, E-gypt. Journal of Petroleum Geology, 26: 189-209. doi: 10.1111/j.1747-5457.2003.tb00025.x [48] Shen, G. Y., Shi, B. Z., 2002. Oceanographic ecology. Science Press, Beijing (in Chinese). [49] Siebert, C., Mc Manus, J., Bice, A., et al., 2006. Molybde-num isotope signatures in continental margin marine sediments. Earth and Planetary Science Letters, 241: 723-733. doi: 10.1016/j.epsl.2005.11.010 [50] Stein, R., 2004. Origin of marine petroleum source rocks from the Late Jurassic to Early Cretaceous Norwegian Greenland Seaway: Evidence for stagnation and up-welling. Marine and Petroleum Geology, 21: 157-176. doi: 10.1016/j.marpetgeo.2003.11.011 [51] Summons, R. E., Jahnke, L. L., Hope, J. M., et al., 1999.2-methylhopanoids as biomarkers for cyanobacterial oxy-genic photosynthesis. Nature, 400: 554-557. [52] Tyson, R. V., 2005. The "productivity versus preservation" con-troversy: Cause, flaws, and resolution. In: Harris Nicholas B, ed., The deposition of organic-carbon-rich sediments: Mod-els, mechanisms, and consequences. Special Publication-So-ciety for Sedimentary Geology, 82: 17-33. [53] Tyson, R. V., Pearson, T. H., 1991. Modern and ancient continental shelf anoxia. Geological Society of Special Publication, 58: 470-482. [54] Vetö, I., Ozsvan, P., Futó, I., et al., 2007. Extension of car-bon flux estimation to oxic sediments based on sulphurgeochemistry and analysis of benthic foraminiferal as-semblages: A case history from the Eocene of Hungary. Palaeogeography, Palaeoclimatology, Palaeoecology, 248: 119-144. doi: 10.1016/j.palaeo.2006.12.001 [55] Voigt, S., Gale, A. S., Voigt, T., 2006. Sea-level change, car-bon cycling and palaeoclimate during the Late Cenoma-nian of Northwest Europe: An integrated palaeoenviron-mental analysis. Cretaceous Research, 27 (6): 836-858. doi: 10.1016/j.cretres.2006.04.005 [56] Walker, J. J., Spear, J. R., Pace, N. R., et al., 2005. Geobiology of a microbial endolithic community in the Yellowstone ge-othermal environment. Nature, 434: 1011-1014. doi: 10.1038/nature03447 [57] Wang, H. M., Ma, X. R., Liu, D., et al. 2007. Chemical vari-ation from biolipids to sedimentary organic matter in modern oceans and its implication to the geobiological evaluation of hydrocarbon source rocks. Earth Sci-ence—Journal of China University of Geosciences, 32 (6): 748-754 (in Chinese with English abstract). [58] Wilde, P., Ti mothy, W. L., Quinby-Hunt, M. S., 2004. Or-ganic carbon proxies in black shales: Molybdenum. Chemical Geology, 206: 167-176. doi: 10.1016/j.chemgeo.2003.12.005 [59] Xie, S. C., Gong, Y. M., Tong, J. N., et al., 2006. Advance-ment from paleontology to geobiology. Chinese Science Bulletin, 51 (19): 2327-2336. [60] Xie, S. C., Pancost, R. D., Yin, H. F., et al., 2005. Two epi-sodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature, 434: 494-497. doi: 10.1038/nature03396 [61] Xie, X. N., Yin, H. F., Xie, S. C., 2007. Comparison on for-ward and inverse analysis methods of marine hydrocar-bon source rocks. Earth Science—Journal of China U-niversity of Geosciences, 32 (6): 861-867 (in Chinesewith English abstract). [62] Yan, J. X., Liu, X. Y., 2007. Geobiological interpretation of the oxygen-deficient deposits of the Middle Permianmarine source rocks in South China: A working hypoth-esis. Earth Science—Journal of China University of Geosciences, 32 (6): 789-796 (in Chinese with Englishabstract). [63] Yang, H., Wang, Y. B., Chen, L., et al., 2007. Calci-microbialite as a potential source rock and its geomicrobiological processes. Earth Science—Journal of China University of Geosci-ences, 32 (6): 797-802 (in Chinese with English abstract). [64] Yin, H. F., Ding, M. H., Zhang, K. X., et al., 1995. Dong-wuan-Indosinian (Late Permian-Middle Triassic) ecos-tratigraphy of the Yangtze region and its margins. Sci-ence Press, Beijing, 338 (in Chinese). [65] Yin, H. F., Yang, F. Q., Xie, S. C., et al., 2004. Biogeology. Sci-ence and Technology Press of Hubei, Wuhan (in Chinese). [66] Younes, M. A., 2001. Source rock-dependent biomarker properties and stable carbon isotopic composition of crude oils from West Bakr fields, onshore Gulf of Suez, Egypt: A case study. Annual Meeting Expanded Ab-stracts—AAPG, Pages222. [67] Younes, M. A., 2003. Hydrocarbon seepage generation and migration in the southern Gulf of Suez, Egypt: Insights from biomarker characteristics and source rock model-ing. Journal of Petroleum Geology, 26: 211-224. doi: 10.1111/j.1747-5457.2003.tb00026.x [68] Younes, M. A., Philp, R. P., 2005. Source rock characteriza-tion based on biological marker distributions of crudeoils in the southern Gulf of Suez, Egypt. Journal of Pe-troleum Geology, 28 (3): 301-317. doi: 10.1111/j.1747-5457.2005.tb00085.x [69] Zhang, Y., He, W. H., Feng, Q. L., 2007. A preli minary biogeo-chemistry-based quantification of primary productivity of end-Permian deep-water basin at Dongpan section, Guangxi, South China. Frontiers of Earth Science in China, in press. [70] Zhou, L., Zhou, H. B., Li, M., et al., 2007. Molybdenum iso-tope signatures from Yangtze block continental margin and its indication to organic burial rate. Earth Science—Journal of China University of Geosciences, 32 (6): 759-766 (in Chinese with English abstract). [71] 胡超涌, 潘涵香, 马仲武, 等, 2007. 海相碳酸盐岩中的铁: 烃源岩古生产力评估的新指标. 地球科学——中国地质大学学报, 32 (6): 755-758. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200706005.htm [72] 黄俊华, 罗根明, 白晓, 等, 2007. 浙江煤山P/T之交碳同位素对有机碳埋藏的指示意义. 地球科学——中国地质大学学报, 32 (6): 767-773. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200706007.htm [73] 金之钧, 张一伟, 陈书平, 2005. 塔里木盆地构造-沉积波动过程. 中国科学(D), 35 (6): 530-539. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200506005.htm [74] 康玉柱, 等, 中国主要盆地油气分布规律及勘探经验. 乌鲁木齐: 新疆科学技术出版社, 2004. [75] 梁狄刚, 陈建平, 2005. 中国南方高、过成熟区海相油源对比问题. 石油勘探与开发, 32 (4): 8-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200502001.htm [76] 马永生, 2006. 中国海相油气田勘探实例之六: 四川盆地普光大气田的发现与勘探. 海相油气地质, 11 (2): 35-40. doi: 10.3969/j.issn.1672-9854.2006.02.006 [77] 秦建中, 2005. 中国的烃源岩. 北京: 科学出版社. [78] 秦建中, 郑伦举, 腾格尔, 2007. 海相高演化烃源岩总有机碳恢复系数研究. 地球科学——中国地质大学学报, 32 (6): 853-860. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200706017.htm [79] 沈国英, 施并章, 2002. 海洋生态学. 北京: 科学出版社. [80] 王红梅, 马相如, 刘邓, 等, 2007. 从生物脂类化合物到沉积有机质的变化及其对正演烃源岩有机质形成的启示. 地球科学——中国地质大学学报, 32 (6): 748-754. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200706004.htm [81] 谢树成, 龚一鸣, 童金南, 等, 2006. 从古生物学到地球生物学的跨越. 科学通报, 51 (19): 2327-2336. doi: 10.3321/j.issn:0023-074X.2006.19.018 [82] 解习农, 殷鸿福, 谢树成, 2007. 海相烃源岩的正反演对比分析. 地球科学——中国地质大学学报, 32 (6): 861-867. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200706018.htm [83] 颜佳新, 刘新宇, 2007. 从地球生物学角度讨论华南中二叠世海相烃源岩缺氧沉积环境成因模式. 地球科学——中国地质大学学报, 32 (6): 789-796. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200706010.htm [84] 杨浩, 王永标, 陈林, 等, 2007. 地球微生物过程与潜在烃源岩的形成: 钙质微生物岩. 地球科学——中国地质大学学报, 32 (6): 797-802. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200706011.htm [85] 殷鸿福, 丁梅华, 张克信, 等, 1995. 扬子区及其周缘东吴-印支期生态地层学. 北京: 科学出版社. [86] 殷鸿福, 杨逢清, 谢树成, 等, 2004. 生物地质学. 武汉: 湖北科学技术出版社. [87] 周炼, 周红兵, 李茉, 等, 2007. 扬子克拉通古大陆边缘Mo同位素特征及对有机碳埋藏量的指示意义. 地球科学——中国地质大学学报, 32 (6): 759-766. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200706006.htm