Forward Method for Gravity, Gravity Gradient and Magnetic Anomalies of Complex Body
-
摘要: 在改进均匀多面体重力场正演公式基础上, 利用二阶张量的坐标变换实现对多面体重力场梯度的求解, 推导了新的多面体重力梯度和磁场的正演公式, 给出了新的统一的均匀多面体重力场、梯度及磁场正演表达式形式, 并用理论模型进行了检验.同时, 应用新的多面体重力场梯度正演公式推导出新的长方体重力场垂直梯度理论表达式.本文给出的均匀多面体重力场、梯度及磁场正演表达式形式统一, 重磁场联合正演中可相互利用其计算过程中的结果, 避免重复计算以提高正演计算效率.Abstract: Based on the improved analytical expression for computing the gravity anomalies due to a homogeneous polyhedral body composed of polygonal facets, and by applying the forward theory with the coordinate transformation of vector and tensor, we deduced the analytical expressions for both gravity gradient tensor and magnetic anomalies due to a polygon, and obtained new analytical expressions for computing vertical gradient of gravity anomalies and vertical component of magnetic anomalies due to a polyhedral body. And we also explicitly developed the complete and unified expressions for calculating gravity anomalies, gravity gradient and magnetic anomalies due to the homogeneous polyhedra. Furthermore, we deduced new analytical expressions for computing the vertical gradient of gravity anomalies due to a finite rectangular prism by applying the new obtained expressions for gravity gradient tensor due to a polyhedral target body. Comparison with forward calculation of models testified the correctness of these new expressions. It will reduce forward time of gravimagnetic anomaly and improve computational efficiency by applying our unified expressions for joint forward of gravimagnetic anomalies due to homogeneous polyhedral bodies.
-
表 1 组合四面体模型顶点坐标
Table 1. Vertices of homogeneous polyhedral bodies
-
[1] Barnett, C. T., 1976. Theoretical modeling of the magneticand gravitational fields of an arbitrarily shaped three-dimensional body. Geophysics, 41 (6): 1353-1364. doi: 10.1190/1.1440685 [2] He, C. L., Zhong, B. S., 1988. A high accuracy forwardmethod for gravity anomaly of complex body. Computing Techniques for Geophysical and Geochemical Exploration, 10 (2): 121-128 (in Chinese with English abstract). [3] Hou, Z. C., Liu, K. J., 1990. The formulas and proceduresfor gravi magnetic anomaly and derivatives. Geological Publishing House, Beijing (in Chinese). [4] Li, X., Chouteau, M., 1998. Three-dimensional gravity mod-eling in all space. Surveys in Geophysics, 19 (4): 339-368. doi: 10.1023/A:1006554408567 [5] Okabe, M., 1979. Analytical expressions for gravity anomalies due to homogeneous polyhedral bodies and translations into magnetic anomalies. Geophysics, 44 (4): 730-741. doi: 10.1190/1.1440973 [6] Pohánka, V., 1988. Optimum expression for computation of the gravity field of homogeneous polyhedral body. Geophysical Prospecting, 36: 733-751. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201503013.htm [7] Tian, Q. N., Wu, W. L., Guan, Z. N., 2001. Interaction inversion for3D gravity and magnetic anomalous bodieswith arbitrary shaped. Computing Techniques for Geophysical and Geochenical Exploration, 23 (2): 125-129 (in Chinese with English abstract). [8] Wang, B. H., Lin, S. B., Deng, Y. Q., 1980. Magnetic fieldsof uniformly magnetized polyhedra. Chinese J. Geophys. , 23 (4): 415-426 (in Chinese with English abstract). [9] Yao, C. L., Guan, Z. N., 1997. Computation of magnetic gradients due to three-dimensional bodies. Science in China (Ser. D), 40 (3): 293-299. doi: 10.1007/BF02877538 [10] 何昌礼, 钟本善, 1988. 复杂形体的高精度重力异常正演方法. 物探化探计算技术, 10 (2): 121-128. https://www.cnki.com.cn/Article/CJFDTOTAL-WTHT198802004.htm [11] 侯重初, 刘奎俊, 1990. 重磁异常场及其高阶导数的正演公式与程序. 北京: 地质出版社. [12] 田黔宁, 吴文鹂, 管志宁, 2001. 任意形状重磁异常三度体人机联作反演. 物探化探计算技术, 23 (2) 125-129. doi: 10.3969/j.issn.1001-1749.2001.02.007 [13] 王邦华, 林盛表, 邓一谦, 1980. 均匀磁化多面体的磁场. 地球物理学报, 23 (4): 415-426. doi: 10.3321/j.issn:0001-5733.1980.04.008