Experimental Verification and Research for the Distortion in the Integrated Frequency Responses of the Sealed Pressure Case and Magnetic Field Sensor
-
摘要: 大地电磁测深在陆地上的方法技术成熟, 但将其移植到海洋中却遇到了较多的技术问题.其中之一是如何将磁场传感器运抵海底实施测量.为抵御海水的侵蚀和抗衡海下的环境压力, 需要研发装载磁场传感器的密封舱.该舱体需满足测磁的技术要求, 即制造材料的非磁性, 且兼顾海洋作业设备轻便的特点.LC4超硬铝合金在可选的材料中性价比居高, 然而用它制成的高压密封舱并非十分完美.因它的弱磁性, 使得磁场传感器装入舱体后, 整体频率响应发生了部分变异.这种变异虽不影响磁场传感器的使用, 但要对其规律特征予以测定, 方能剔除由此产生的对磁场测量的不良影响.在所构思的实验装置中, 通过人为产生扫频磁场, 对密封和非密封条件下的磁场传感器进行激励.在响应输出端, 测取幅频特性和相频特性, 获得归一化的对比资料和频响异常曲线, 从而对密封前后磁场传感器的性能变化有较清楚的认识.实验结果揭示, 由高压密封舱引起的频响变异发生在中高频区段.实验数据可作为标定资料, 对海底大地电磁探测的实测信号进行校正后, 即可还原出真实的海底场源信息.Abstract: Although the magnetotelluric sounding method applied to land is mature, many technical problems arise when they are transplanted into the seafloor environment, one of which is how to put magnetic field sensors down to the seafloor to complete measurements. To protect magnetic field sensors from intense erosion and high pressure, suitable sealed pressure cases must be designed. Considering the magnetic measurement and seafloor operation, the sealed pressure case should be nonmagnetic and transportable. Among all optional materials, LC4 super-hard aluminum alloy has the highest performance to price ratio. However, it doesn′t mean that the sealed pressure case made by LC4 will be perfect in performance. In fact, because of its weak magnetism, the pressure case made by LC4 has distorting effect on frequency responses of the magnetic field sensors sealed in it. This distorting effect doesn′t affect the use of the magnetic field sensor, but if we want to eliminate its impact, we should study it through experimental measurements. In our experimental tests, we used frequency swept magnetic field as excitation signal, and then measured responses of the magnetic field sensor before and after being loaded into the sealed pressure case. Ultimately, we obtained normalized abnormal curves for the frequency responses, through which we could reveal how the sealed pressure case impacts the responses of the magnetic field sensor. Experiment results suggest that the response distortion induced by the sealed pressure case appears in the mid and high frequency area. Using experiment results as standardized data, the frequency responses collected by seafloor magnetotelluric measurements can be corrected to produce authentic information about the seafloor field source.
-
表 1 密封条件下磁场传感器的幅频和相频响应测试数据
Table 1. The measuring data of amplitude & phase frequency response to pressurized magnetic field sensor
表 2 非密封条件下磁场传感器的幅频和相频响应测试数据
Table 2. The measuring data of amplitude & phase frequency response to no pressurized magnetic field sensor
-
[1] Cheng, P. Q., 1995. Digital signals process tutorial. Tsinghua University Press, Beijing, 246-251 (in Chinese). [2] Deng, M., Du, G., Zhang, Q. S., et al., 2004. The characteristic and prospecting technology of the marine magneto-telluric field. Chinese Journal of Scientific Instrument, 25 (6): 742-746 (in Chinese with English abstract). [3] Deng, M., Liu, F. L., Zhang, Q. S., et al., 2006. Long-spanand multi-point synchronizing data acquisition for sea-floor magnetotelluric based on union of marine andland. Science & Technology Review, 24 (10): 28-32 (in Chi-nese with English abstract). [4] Dirk, S., Saad, S., John, V., et al., 2006. Recent controlled source EM results show positive impact on exploration at shell. SEG/New Orleans 2006 Annual Meeting, 3536-3541. [5] Evans, R. L., Tarits, P., Chave, A. D., et al., 1999. Asymmetric electrical structurein the mantle beneath the EastPacific Rise at 17°S. Science, 286: 752-756. doi: 10.1126/science.286.5440.752 [6] Jones, A. G., Garcia, X., 2003. Okak Bay AMT data-set case study: Lessons in di mensionality and scale. J. Geophys. , 68 (1): 70-91. doi: 10.1190/1.1543195 [7] Jonny, H., Mikhail, B., 2005. The offshore EM challeng SEG/Houston 2005 Annual Meeting, 59-66. [8] Key, K. W., Constable, S. C., Weiss, C. J., 2006. Mapping 3D salt using the 2D marine magnetolluric method: Case study from Gemini Prospect, Gulf of Mexico. Geophysics, 71: 17-27. [9] Peter, W., Yves, L., 2006. MultiLoop Ⅲ—Asignificant stepahead in electromagnetic modelling. SEG/New Orleans 2006 Annual Meeting, 3571-3578. [10] Song, J. M., 2000. The technology of marine developing. Shandong Science & Technology Press, Jinan, 13-14 (in Chinese). [11] Summerfield, P. J., Gale, L. S., 2005. Marine CSEM acquisition challenges. SEG/Houston 2005 Annual Meeting, 538-542. [12] Wang, S. P., 2000. Engineering reliability. Beijing University of Aeronautics & Astronautics Press, Beijing, 51-52 (in Chinese). [13] Wei, W. B., Deng, M., Tan, H. D., et al., 2001. Developmentof marine magnetotelluric prospecting technique in China. Seismology and Geology, 23 (2): 131-137 (in Chinese with English abstract). [14] Wei, W. B., Jin, S., Ye, G. F., et al., 2006. Features of thefaults in Center and North Tibetan plateau: Based ontheresults of INDEPTH (Ⅲ) -MT. Earth Science—Journal of China University of Geosciences, 32 (2): 257-265. [15] Zheng, J. L., Ying, Q. H., Yang, W. L., 2000. Signals & systems (first volume). Higher Education Press, Beijing, 29-37 (in Chinese). [16] 程佩青, 1995. 数字信号处理教程. 北京: 清华大学出版社, 246-251. [17] 邓明, 杜刚, 张启升, 等, 2004. 海洋大地电磁场的特征与测量技术. 仪器仪表学报, 25 (6): 742-746. doi: 10.3321/j.issn:0254-3087.2004.06.011 [18] 邓明, 刘方兰, 张启升, 等, 2006. 海陆联合大跨度多点位海底大地电磁同步数据采集. 科技导报, 24 (10): 28-32. doi: 10.3321/j.issn:1000-7857.2006.10.007 [19] 宋金明, 2000. 海洋开发技术. 济南: 山东科学技术出版社. 13-14. [20] 王少萍, 2000. 工程可靠性. 北京: 北京航空航天大学出版社. 51-52. [21] 魏文博, 邓明, 谭捍东, 等, 2001. 我国海底大地电磁探测技术研究的进展. 地震地质, 23 (2): 131-137. doi: 10.3969/j.issn.0253-4967.2001.02.001 [22] 魏文博, 金胜, 叶高峰, 等, 2006. 西藏高原中、北部断裂构造特征: INDEPTH (Ⅲ) -MT观测提供的依据. 地球科学———中国地质大学学报, 32 (2): 257-265. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200602016.htm [23] 郑君里, 应启珩, 杨为理, 2000. 信号与系统(上册). 北京: 高等教育出版社, 29-37.