Influences of Foundation Deformation Modulus to Stress Distribution of Roller Compacted Concrete Arch Dam
-
摘要: 以贵州省鱼简河水利工程为背景, 在拟定坝址区地质模型和边界条件的基础上, 建立拱坝与地基相互作用的三维数学力学模型, 应用ANSYS软件研究不同变形模量对拱坝应力分布的影响.结果表明: (1) 最大主应力主要分布于坝底部位及软弱夹层附近; (2) 中间软层变形模量的大小对拱端与拱冠应力影响较大; 中间软弱层变形模量小于0.5 GPa时, 其应力差异较大; (3) 当地基为3种材料时, 最大拉压应力不是位于中间软弱层的顶部, 而是位于距离软弱层顶约10~15 m的位置, 这一结论对拱坝优化设计与坝基处理提供很好的理论依据.Abstract: With Yujianhe hydraulic engineering as the background and on the basis of geological module and boundary conditions of Liding dam, a 3-D mathematic and mechanical module was constructed to study the influence of different deformation modules on stress distribution by ANSYS software.The result indicates: (1) The maximum principal stresses are chiefly distributed at the bottom of the dam and close to weak intercalated layers; (2) The deformation module of weak intercalated layers affects the stresses of abutment and crown of the arch, and when it is less than 0.5 GPa, the differences of stresses are obvious; (3) When the foundation is composed of three materials, the maximum tensile and compressive stresses exist about 10-15 m to the top of the weak intercalated layers rather than at the top of them.This conclusion provides a theoretical basis for the optimal design for arch dam and dam treatment.
-
表 1 材料物理力学参数
Table 1. Physico-mechanical parameters of the materials
-
[1] Carrere, A. C., Nury, C., Pouyet, P., 1987. The contribution of a non-linear, three dimensional finite element model to the evaluation of the appropriateness of a geologically complex foundation for 220 m high arch damin Longtan, China. In: Proceeding 6th ISRM Congress. [2] Chai, J. R., Wu, Y. Q., 2000. Mathematical model for couple analysis of seepage and stress fieldin RCCD. Hydraulic Journal, (9): 33-36(in Chinese with English abstract). [3] Qian, X. D., Zhao, Y., Ren, Q. W., 2001. Influence of the strength of bearing surface on stress and deformation of arch dams. Journal of Hohai University, 29(3): 95-98(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HHDX200103021.htm [4] Wang, L. Q., Tang, H. M., Liu, G. Y., et al., 2003. Study of rock mass deformation modulus on dam foundation of Yujianhe reservoir. Coal Geology & Exploration, 31(6): 34-36(in Chinese with English abstract). doi: 10.1007/s11769-003-0044-1 [5] Wang, L. Q., Tang, H. M., Liu, Y. R., et al., 2004. Application of VJC-RMR method to determining rock mass modulus of deformation. Rock and Soil Mechanics, 25(5): 811-813(in Chinese with English abstract). doi: 10.1007/BF02911033 [6] Zhang, Y. H., Yin, H. M., Wang, L. Q., 2005. Rock mass stability analysis of abut ments. Chinese Journal of Rock Mechanics and Engineering, 24(18): 3305-3310(in Chinese with English abstract). [7] Zhu, B. F., Gao, J. Z., Chen, Z. Y., et al., 2002. Arch dam design and study. China Water Power Press, Beijing (in Chinese). [8] 柴军瑞, 仵彦卿, 2000. 碾压混凝土坝渗流场与应力场耦合分析的数学模型. 水利学报, (9): 33-36. doi: 10.3321/j.issn:0559-9350.2000.09.007 [9] 钱向东, 赵引, 任青文, 2001. 建基面强度对拱坝应力、变形的影响. 河海大学学报, 29(3): 95-98. doi: 10.3321/j.issn:1000-1980.2001.03.022 [10] 王亮清, 唐辉明, 刘贵应, 等, 2003. 鱼简河水库坝基岩体模量研究. 煤田地质与勘探, 31(6): 34-36. doi: 10.3969/j.issn.1001-1986.2003.06.011 [11] 王亮清, 唐辉明, 刘佑荣, 等, 2004. VJC-RMR法在岩体变形模量确定中的应用. 岩土力学, 25(5): 811-813. doi: 10.3969/j.issn.1000-7598.2004.05.031 [12] 张宜虎, 尹红梅, 王亮清, 2005. 鱼简河拱坝坝肩岩体稳定性分析. 岩石力学与工程学报, 24(18): 3305-3310. doi: 10.3321/j.issn:1000-6915.2005.18.018 [13] 朱伯芳, 高季章, 陈祖煜, 等, 2002. 拱坝设计与研究. 北京: 中国水利水电出版社.