Jinle Landslide Stability under Water Level Fluctuation of Three Gorges Reservoir
-
摘要: 三峡水库运行后,水库水位每年将在145 m~162 m~175 m间波动,库水位的浸泡软化作用及水位升降引起的地下水位的波动将会降低库岸岩土体的抗剪强度,影响已有滑坡的稳定性.因此,在实际水库运行条件下滑坡的稳定性是目前迫切需要研究的重要课题.针对库区大型复杂滑坡--金乐滑坡,分析了该滑坡的工程地质条件和形成机制; 建立了二维有限元计算模型并选择合理的岩土力学参数; 利用英国帝国理工学院ICFEP有限元软件,依据水库实际运行曲线,在一年时间内分7种不同的模拟状态进行了模拟.结果表明: (1) 金乐滑坡在天然状态下处于稳定状态; (2) 库水位上升状态下,滑坡前缘稳定性较相应的稳定水位状态较好; (3) 水位下降状态,滑坡前缘将出现破坏,特别是162 m下降至145 m时,滑坡前缘出现破坏,存在中前部渐进破坏的可能; (4) 金乐滑坡变形破坏形式为牵引渐进式,在一个水位波动周期内不存在整体滑移的危险.建议对滑坡前缘进行治理.Abstract: After the operation of Three Gorges reservoir,the water level of the reservoir will fluctuate in the range of 145 m-162 m-175 m.Water level fluctuation will soften the rock and soil on the bank and induce the underground water fluctuation and decrease the shear strength,which will influence the landslide stability.Therefore,landslide stability evaluation under the reservoir running is necessary and important.Jinle landslide is one of the large and complicated landslides in this area.Based on the engineering geological condition investigation results,the formation mechanism is analyzed.The 2D finite element model is developed and the rational calculation parameters of the rock and soil are chosen.With ICFEP software,7 simulations are done according to the reservoir run curve.The results show that: (1) in the natural state,Jinle landslide is stable; (2) when the water level is impounding,the stability of the landslide front edge is better than the corresponding stable water levels; (3) when water level falls,the front edge of the landslide will fail; especially when the water level drops rapidly from 162 m to 145 m the front edge of the landslide will fail,meanwhile it is possible subject to progressive failure in the front and middle parts of the landslide; (4) the deformation and failure of the Jinle landslide is pulling and progressive failure mode.During the first water level fluctuation period,the whole landslide can stay stable.The front part of this landslide should be improved.
-
表 1 岩土体物理力学参数
Table 1. Mechanical parameters of the model
-
[1] Breth, J. H., 1967. The dynamics of a landslide produced by filling a reservoir. 9th Int. Cong. on Large Dams, Istanbul, Q32, R3: 35-45. [2] Chai, J. R., Li, S. Y., 2004. Coupling analysis of seepage and stress fields in Xietan landslide in Three Gorges region. Chinese Journal of Rock Mechanics and Engineering, 23(8): 1280-1284(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX200408009.htm [3] Ding, X. L., Fu, J., Zhang, Q. H., 2004. Stability analysis of landslide in the south end of Fengjie highway bridge with fluctuation of water level of Three Gorges reservoir. Chinese Journal of Rock Mechanics and Engineering, 23(17): 2913-2919(in Chinese with English abstract). doi: 10.1007/BF02911033 [4] Franco, M., Claudio, V., 2003. Neotectonics of the Vajont dam site. Geomorphology, 54(1-2): 33-37. doi: 10.1016/S0169-555X(03)00053-9 [5] Hu, X. L., 2005. Numerical si mulation on anti-slide construction effects of landslide in Three Gorges reservoir area. The Proceedings of the China-association for science and Technology. [s. l. ]: [s. n. ], 2(1): 139-143. [6] Hu, X. L., Tang, H. M., Ma, S. Z., et al., 2006. Numricalsti mulation of 3D landslide stability in Three Gorges area based on NMR. Earth Science-Journal of China University of Geosciences, 31(2): 279-285(in Chinesewith English abstract). doi: 10.1016/S1872-2067(06)60037-5 [7] Liao, H. J., Sheng, Q., Gao, S. H., et al., 2005. Influence of drawdown of reservoir water level on landslide stability. Chinese Journal of Rock Mechanics and Engineering, 24(19): 3454-3458(in Chinese with English abstract). doi: 10.1007/s11769-005-0036-4 [8] Liu, C. H., Chen, C. X., Feng, X. T., 2005. Study on mechanism of slope instability due to reservoir water level rise. Rock and Soil Mechanics, 26(5): 769-773(in Chinese with English abstract). doi: 10.1007/s11769-005-0030-x [9] Liu, X. X., Xia, Y. Y., Lian, C., et al., 2005. Research on method of landslide stability valuation during sudden drawdown of reservoir level. Rock and Soil Mechanics, 26(9): 1427-1431(in Chinese with English abstract). doi: 10.1007/s11769-005-0030-x [10] Muller, L., 1964. The rock slide in the Vajont Valley. Rock Mechanics and Engineering Geology, 2(1): 148-222. [11] Potts, D. M., Zdravkovic, L., 1999. Finite element analysis in geotechnical engineering: Theory. Thomas Telford, London. [12] Tang, H. M., Zhang, G. C., 2005. Study on slope stability during reservoir water level falling. Rock and Soil Mechanics, 26(Suppl. 2): 11-15(in Chinese with Englishabstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YTLX2005S2004.htm [13] Zhu, D. L., Ren, G. M., Nie, D. X., et al., 2002. Effecting and forecasting of landslide stability with the change of reservoir water level. Hydrogeology and Engineering Geology, (3): 6-9(in Chinese with English abstract). doi: 10.1007/s11769-002-0037-5 [14] 柴军瑞, 李守义, 2004. 三峡库区泄滩滑坡渗流场与应力场耦合分析. 岩石力学与工程学报, 23(8): 1280-1284. doi: 10.3321/j.issn:1000-6915.2004.08.009 [15] 丁秀丽, 付敬, 张奇华, 2004. 三峡水库涨落条件下奉节南桥头滑坡稳定性分析. 岩石力学与工程学报, 23(17): 2913-2919. doi: 10.3321/j.issn:1000-6915.2004.17.011 [16] 胡新丽, 唐辉明, 马淑芝, 等, 2006. 基于NMR的库区滑坡三维稳定性数值模拟. 地球科学——中国地质大学学报, 31(2): 279-285. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200602019.htm [17] 廖红建, 盛谦, 高石夯, 等, 2005. 库水位下降对滑坡体稳定性的影响. 岩石力学与工程学报, 24(19): 3454-3458. doi: 10.3321/j.issn:1000-6915.2005.19.008 [18] 刘才华, 陈从新, 冯夏庭, 2005. 库水位上升诱发边坡失稳机理研究. 岩土力学, 26(5): 769-773. doi: 10.3969/j.issn.1000-7598.2005.05.018 [19] 刘新喜, 夏元友, 练操, 等, 2005. 库水位骤降时的滑坡稳定性评价方法研究. 岩土力学, 26(9): 1427-1431. doi: 10.3969/j.issn.1000-7598.2005.09.016 [20] 唐辉明, 章广成, 2005. 库水位下降下的边坡稳定性研究. 岩土力学, 26(增刊2): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXU201802007.htm [21] 朱冬林, 任光明, 聂德新, 等, 2002. 库水位变化下对水库滑坡稳定性影响的预测. 水文地质工程地质, (3): 6-9. doi: 10.3969/j.issn.1000-3665.2002.03.002