A Study of Equivalent Deformability Parameters in Rock Masses
-
摘要: 岩体变形参数的确定对岩体稳定性模拟至关重要.提出了确定规则裂隙和不规则裂隙岩体等效变形参数的一种模型, 探讨了岩体等效变形参数的规律.通过对不考虑渗流-应力耦合时岩体等效变形性能的研究, 可以发现岩体的等效变形参数不仅与各组结构面的几何形态、结构面变形参数、岩块变形参数等有关, 而且与不同组系结构面间的交切形态有关.岩体的REVs具备以下几点规律: 首先REVs具有多尺度效应和不确定性.其次, REVs与结构面各几何形态要素之间有如下关系: 平均迹长越大, 平均间距越小, 方向角的方差越大, 结构面分布越凌乱, REVs的取值越小.REVs与岩块、结构面变形参数之间有如下关系: 结构面变形参数与岩块变形参数的差异程度对REVs的取值没有明显影响, 但是不同组系结构面或是同一组中的各条结构面, 其变形参数差异越小, REVs的取值将越小.Abstract: It is very important to determine deformability parameters in the simulation of stability of rock masses.A model to determine equivalent deformability parameters through regular and irregular fractures in rock mass is put forward in the paper.The research of deformability property of rock mass without consideration of the coupling behavior indicates that the equivalent deformability parameters are not only related to the length, orientation and deformability property of discontinuities, but also related to the connection of each group of discontinuities.It is found that the REVs of rock masses is of several important properties.Firstly, REVs has multi-scale effect and uncertainty properties.Secondly, REVs alter with the change of the geometrical properties of the network: REVs is smaller in the case of longer length, higher density and more disorder of orientation.The diversity between the deformability parameters of rock blocks and discontinuity has no effect on the value of REVs, while, if the deformability parameters of different groups of discontinuities become more consistent, the value of REVs is smaller.
-
Key words:
- equivalent deformability parameters /
- rock mass /
- regular fracture /
- irregular fracture
-
表 1 不同方向上等效变形参数计算结果
Table 1. Computed results of equivalent deformability parameters in different directions
表 2 确定12个不同方向上等效柔度矩阵时所需要建立的分析模型和荷载条件
Table 2. Analysis models and loading conditions needed for equivalent flexibility matrix in twelve directions
表 3 结构面几何形态参数及力学参数
Table 3. Geometric shape parameters and mechanical parameters of the structural plane
表 4 不同尺寸分析域等效模量计算结果对比
Table 4. Comparison of equivalent modulus computed results under different dimension analysis domains
-
[1] Barton, N., Lien, R., Lunde, J., 1974. Engineering classification of rock masses for the design of tunnel support. Rock Mechanics, 6 (4): 189-236. doi: 10.1007/BF01239496 [2] Bieniawski, Z. T., 1978. Determining rock mass deformability: Experience from case histories. Int. J. Rock Mech. Sci. , 15 (5): 237-247. doi: 10.1016/0148-9062(78)90956-7 [3] Chen, B., Li, N., Zhuo, R. H., 2001. FEManalysis on fully coupled thermo-hydro-mechanic behavior of porous media. Chinese Journal of Rock Mechanics and Engineering, 20 (4): 467-472 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX200104013.htm [4] Chen, J. P., Xiao, S. F., Wang, Q., 1995. Three-dimensional network numerical simulation technology for random discontinuous interfaces. Northeast Normal University Press, Changchun (in Chinese). [5] Hoek, E., Brown, T., 1980. Underground excavation in rock. The Institute of Mining and Metallurgy Press, London. [6] Goodman, R. E., 1981. Methods of geological engineering in discontinuous rock. West Publishing Company, New York. [7] Hu, Y. J., Qian, R., Su, B. Y., 2001. A numerical simulation method to determine unsaturated hydraulic parameters of fracture. Chinese Journal of Geotechnical Engineering, 23 (3): 284-287 (in Chinese with English abstract). [8] Huang, R. Q., Xu, M., Chen, J. P., et al., 2004. Complicated rock mass structure fine description and its engineering application. Science Press, Beijing (in Chinese). [9] Jia, H. B., Ma, S. Z., Tang, H. M., et al., 2002. Study on engineering application of 3-D modeling of rock discontinuity network. Chinese Journal of Rock Mechanics and Engineering, 21 (7): 976-979 (in Chinese with English abstract). doi: 10.1007/s11769-002-0042-8 [10] Kawamoto, T., Ichikawa, Y., Kyoya, T., 1988. Defomation and fracturing behaviour of discontinuous rock massesand damage mechanics theory. Int. J. for Numerical and Analytical Methods in Geomechanics, 12 (1): 1-30. doi: 10.1002/nag.1610120102 [11] Min, K. B., Jing, L., 2003. Numerical determination of the equivalent elastic compliance tensor for fractured rock masses using the distinct element method. Int. J. Rock Mech. Min. Sci. , 40 (6): 795-816. doi: 10.1016/S1365-1609(03)00038-8 [12] Sun, J., Feng, Z. L., 1993. Several advances of interaction problemin rock mechanics and engineering-Structure and media interaction theory and application. Hehai University Press, Nanjing (in Chinese). [13] Tang, H. M., Ma, S. Z., Liu, Y. R., 2002. Aresearch on thestability and control measures of Zhaoshuling landslidein the reservoir district of the Three Gorges project. Earth Science-Journal of China University of Geosciences, 27 (5): 621-625 (in Chinese with English abstract). [14] Yu, Q. C., Chen, D. J., Xue, G. F., 1995. Hydrodynamics of discontinuous fracture network. Earth Science-Journal of China University of Geosciences, 20 (4): 474-478 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX199504024.htm [15] Zhang, Y. T., 2003. Analysis on several catastrophic failuresof hydraulic projects in view of rock hydraulics. Journal of Hydraulic Engineering, (5): 1-10 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SLXB200305001.htm [16] Zhou, C. B., Yu, S. D., 1999. Representative elementary volume REV-A fundamental problem for selecting the mechanical parameters of jointed rockmass. Journal of Engineering Geology, 7 (4): 332-336 (in Chinese with English abstract). [17] Zhou, H. M., Sheng, Q., Wu, A. Q., 2001. Size effect analysis on macro-mechanics parameters for the rock masses of the TGP ship lock slope. Chinese Journal of Rock Mechanics and Engineering, 20 (5): 661-664 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX200105014.htm [18] Zhu, B. F., 2000. The principle and application of finite element method (Second edition). Water Conservancy and Hydroelectric Publishing House, Beijing (in Chinese). [19] 陈波, 李宁, 禚瑞花, 2001. 多孔介质的变形场、渗流场、温度场耦合有限元分析. 岩石力学与工程学报, 20 (4): 467-472. doi: 10.3321/j.issn:1000-6915.2001.04.010 [20] 陈剑平, 肖树芳, 王清, 1995. 随机不连续面三维网络数值模拟技术. 长春: 东北师范大学出版社. [21] 胡云进, 钱锐, 速宝玉, 2001. 一种确定裂隙非饱和水力参数的数值模拟法. 岩土工程学报, 23 (3): 284-287. doi: 10.3321/j.issn:1000-4548.2001.03.005 [22] 黄润秋, 许模, 陈剑平, 等, 2004. 复杂岩体结构精细描述及其工程应用. 北京: 科学出版社. [23] 贾洪彪, 马淑芝, 唐辉明, 等, 2002. 岩体结构面网络三维模拟的工程应用研究. 岩石力学与工程学报, 21 (7): 976-979. doi: 10.3321/j.issn:1000-6915.2002.07.008 [24] 孙均, 冯紫良, 1993. 岩石力学与工程中相互作用问题的若干进展——结构与介质相互作用理论及应用. 南京: 河海大学出版社. [25] 唐辉明, 马淑芝, 刘佑荣, 2002. 三峡工程库区赵树岭滑坡稳定性与防治对策研究. 地球科学——中国地质大学学报, 27 (5): 621-625. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200205023.htm [26] 于青春, 陈德基, 薛果夫, 1995. 岩体非连续裂隙网络水力学特征. 地球科学——中国地质大学学报, 20 (4): 474-478. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199504024.htm [27] 张有天, 2003. 从岩石水力学观点看几个重大工程事故. 水利学报, (5): 1-10. doi: 10.3321/j.issn:0559-9350.2003.05.001 [28] 周创兵, 於三大, 1999. 论岩体表征单元体积REV——岩体力学参数取值的一个基本问题. 工程地质学报, 7 (4): 332-336. doi: 10.3969/j.issn.1004-9665.1999.04.008 [29] 周火明, 盛谦, 邬爱清, 2001. 三峡工程永久船闸边坡岩体宏观力学参数的尺寸效应研究. 岩石力学与工程学报, 20 (5): 661-664. doi: 10.3321/j.issn:1000-6915.2001.05.012 [30] 朱伯芳, 2000. 有限单元法原理与应用(第二版). 北京: 中国水利水电出版社.