• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    岩体等效变形参数研究

    唐辉明 张宜虎 孙云志

    唐辉明, 张宜虎, 孙云志, 2007. 岩体等效变形参数研究. 地球科学, 32(3): 389-396.
    引用本文: 唐辉明, 张宜虎, 孙云志, 2007. 岩体等效变形参数研究. 地球科学, 32(3): 389-396.
    TANG Hui-ming, ZHANG Yi-hu, SUN Yun-zhi, 2007. A Study of Equivalent Deformability Parameters in Rock Masses. Earth Science, 32(3): 389-396.
    Citation: TANG Hui-ming, ZHANG Yi-hu, SUN Yun-zhi, 2007. A Study of Equivalent Deformability Parameters in Rock Masses. Earth Science, 32(3): 389-396.

    岩体等效变形参数研究

    基金项目: 

    中国地质调查局“鄂西恩施地区滑坡形成机制与危险性评价”项目 1212010640604

    详细信息
      作者简介:

      唐辉明(1962-), 男, 教授, 博士生导师, 主要从事工程地质模拟和地质灾害防治研究.E-mail: tanghm@cug.edu.cn

    • 中图分类号: TV45

    A Study of Equivalent Deformability Parameters in Rock Masses

    • 摘要: 岩体变形参数的确定对岩体稳定性模拟至关重要.提出了确定规则裂隙和不规则裂隙岩体等效变形参数的一种模型, 探讨了岩体等效变形参数的规律.通过对不考虑渗流-应力耦合时岩体等效变形性能的研究, 可以发现岩体的等效变形参数不仅与各组结构面的几何形态、结构面变形参数、岩块变形参数等有关, 而且与不同组系结构面间的交切形态有关.岩体的REVs具备以下几点规律: 首先REVs具有多尺度效应和不确定性.其次, REVs与结构面各几何形态要素之间有如下关系: 平均迹长越大, 平均间距越小, 方向角的方差越大, 结构面分布越凌乱, REVs的取值越小.REVs与岩块、结构面变形参数之间有如下关系: 结构面变形参数与岩块变形参数的差异程度对REVs的取值没有明显影响, 但是不同组系结构面或是同一组中的各条结构面, 其变形参数差异越小, REVs的取值将越小.

       

    • 图  1  单位厚度的规则裂隙岩体

      Fig.  1.  Rock mass with regular fracture in unit thickness

      图  2  旋转坐标系中的规则裂隙岩体

      Fig.  2.  Rock mass with regular fracture in rotating coordinate system

      图  3  岩体等效变形参数随旋转角ϕ变化关系曲线

      Fig.  3.  Relation curve between equivalent deformability parameter and rotation angle ϕ

      图  4  等效变形参数求解图示

      Fig.  4.  Solving diagram of equivalent deformability parameter

      图  5  3种线性不相关的荷载边界条件

      Fig.  5.  Three kinds of linear uncor related load boundary conditions

      表  1  不同方向上等效变形参数计算结果

      Table  1.   Computed results of equivalent deformability parameters in different directions

      表  2  确定12个不同方向上等效柔度矩阵时所需要建立的分析模型和荷载条件

      Table  2.   Analysis models and loading conditions needed for equivalent flexibility matrix in twelve directions

      表  3  结构面几何形态参数及力学参数

      Table  3.   Geometric shape parameters and mechanical parameters of the structural plane

      表  4  不同尺寸分析域等效模量计算结果对比

      Table  4.   Comparison of equivalent modulus computed results under different dimension analysis domains

    • [1] Barton, N., Lien, R., Lunde, J., 1974. Engineering classification of rock masses for the design of tunnel support. Rock Mechanics, 6 (4): 189-236. doi: 10.1007/BF01239496
      [2] Bieniawski, Z. T., 1978. Determining rock mass deformability: Experience from case histories. Int. J. Rock Mech. Sci. , 15 (5): 237-247. doi: 10.1016/0148-9062(78)90956-7
      [3] Chen, B., Li, N., Zhuo, R. H., 2001. FEManalysis on fully coupled thermo-hydro-mechanic behavior of porous media. Chinese Journal of Rock Mechanics and Engineering, 20 (4): 467-472 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX200104013.htm
      [4] Chen, J. P., Xiao, S. F., Wang, Q., 1995. Three-dimensional network numerical simulation technology for random discontinuous interfaces. Northeast Normal University Press, Changchun (in Chinese).
      [5] Hoek, E., Brown, T., 1980. Underground excavation in rock. The Institute of Mining and Metallurgy Press, London.
      [6] Goodman, R. E., 1981. Methods of geological engineering in discontinuous rock. West Publishing Company, New York.
      [7] Hu, Y. J., Qian, R., Su, B. Y., 2001. A numerical simulation method to determine unsaturated hydraulic parameters of fracture. Chinese Journal of Geotechnical Engineering, 23 (3): 284-287 (in Chinese with English abstract).
      [8] Huang, R. Q., Xu, M., Chen, J. P., et al., 2004. Complicated rock mass structure fine description and its engineering application. Science Press, Beijing (in Chinese).
      [9] Jia, H. B., Ma, S. Z., Tang, H. M., et al., 2002. Study on engineering application of 3-D modeling of rock discontinuity network. Chinese Journal of Rock Mechanics and Engineering, 21 (7): 976-979 (in Chinese with English abstract). doi: 10.1007/s11769-002-0042-8
      [10] Kawamoto, T., Ichikawa, Y., Kyoya, T., 1988. Defomation and fracturing behaviour of discontinuous rock massesand damage mechanics theory. Int. J. for Numerical and Analytical Methods in Geomechanics, 12 (1): 1-30. doi: 10.1002/nag.1610120102
      [11] Min, K. B., Jing, L., 2003. Numerical determination of the equivalent elastic compliance tensor for fractured rock masses using the distinct element method. Int. J. Rock Mech. Min. Sci. , 40 (6): 795-816. doi: 10.1016/S1365-1609(03)00038-8
      [12] Sun, J., Feng, Z. L., 1993. Several advances of interaction problemin rock mechanics and engineering-Structure and media interaction theory and application. Hehai University Press, Nanjing (in Chinese).
      [13] Tang, H. M., Ma, S. Z., Liu, Y. R., 2002. Aresearch on thestability and control measures of Zhaoshuling landslidein the reservoir district of the Three Gorges project. Earth Science-Journal of China University of Geosciences, 27 (5): 621-625 (in Chinese with English abstract).
      [14] Yu, Q. C., Chen, D. J., Xue, G. F., 1995. Hydrodynamics of discontinuous fracture network. Earth Science-Journal of China University of Geosciences, 20 (4): 474-478 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX199504024.htm
      [15] Zhang, Y. T., 2003. Analysis on several catastrophic failuresof hydraulic projects in view of rock hydraulics. Journal of Hydraulic Engineering, (5): 1-10 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SLXB200305001.htm
      [16] Zhou, C. B., Yu, S. D., 1999. Representative elementary volume REV-A fundamental problem for selecting the mechanical parameters of jointed rockmass. Journal of Engineering Geology, 7 (4): 332-336 (in Chinese with English abstract).
      [17] Zhou, H. M., Sheng, Q., Wu, A. Q., 2001. Size effect analysis on macro-mechanics parameters for the rock masses of the TGP ship lock slope. Chinese Journal of Rock Mechanics and Engineering, 20 (5): 661-664 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX200105014.htm
      [18] Zhu, B. F., 2000. The principle and application of finite element method (Second edition). Water Conservancy and Hydroelectric Publishing House, Beijing (in Chinese).
      [19] 陈波, 李宁, 禚瑞花, 2001. 多孔介质的变形场、渗流场、温度场耦合有限元分析. 岩石力学与工程学报, 20 (4): 467-472. doi: 10.3321/j.issn:1000-6915.2001.04.010
      [20] 陈剑平, 肖树芳, 王清, 1995. 随机不连续面三维网络数值模拟技术. 长春: 东北师范大学出版社.
      [21] 胡云进, 钱锐, 速宝玉, 2001. 一种确定裂隙非饱和水力参数的数值模拟法. 岩土工程学报, 23 (3): 284-287. doi: 10.3321/j.issn:1000-4548.2001.03.005
      [22] 黄润秋, 许模, 陈剑平, 等, 2004. 复杂岩体结构精细描述及其工程应用. 北京: 科学出版社.
      [23] 贾洪彪, 马淑芝, 唐辉明, 等, 2002. 岩体结构面网络三维模拟的工程应用研究. 岩石力学与工程学报, 21 (7): 976-979. doi: 10.3321/j.issn:1000-6915.2002.07.008
      [24] 孙均, 冯紫良, 1993. 岩石力学与工程中相互作用问题的若干进展——结构与介质相互作用理论及应用. 南京: 河海大学出版社.
      [25] 唐辉明, 马淑芝, 刘佑荣, 2002. 三峡工程库区赵树岭滑坡稳定性与防治对策研究. 地球科学——中国地质大学学报, 27 (5): 621-625. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200205023.htm
      [26] 于青春, 陈德基, 薛果夫, 1995. 岩体非连续裂隙网络水力学特征. 地球科学——中国地质大学学报, 20 (4): 474-478. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199504024.htm
      [27] 张有天, 2003. 从岩石水力学观点看几个重大工程事故. 水利学报, (5): 1-10. doi: 10.3321/j.issn:0559-9350.2003.05.001
      [28] 周创兵, 於三大, 1999. 论岩体表征单元体积REV——岩体力学参数取值的一个基本问题. 工程地质学报, 7 (4): 332-336. doi: 10.3969/j.issn.1004-9665.1999.04.008
      [29] 周火明, 盛谦, 邬爱清, 2001. 三峡工程永久船闸边坡岩体宏观力学参数的尺寸效应研究. 岩石力学与工程学报, 20 (5): 661-664. doi: 10.3321/j.issn:1000-6915.2001.05.012
      [30] 朱伯芳, 2000. 有限单元法原理与应用(第二版). 北京: 中国水利水电出版社.
    • 加载中
    图(5) / 表(4)
    计量
    • 文章访问数:  2371
    • HTML全文浏览量:  121
    • PDF下载量:  73
    • 被引次数: 0
    出版历程
    • 收稿日期:  2007-03-19
    • 刊出日期:  2007-05-25

    目录

      /

      返回文章
      返回