Late Quaternary Variations of Productivity in the Western Equatorial Pacific Ocean: Records from ODP Hole 807A
-
摘要: 通过研究翁通-爪哇海台ODP807A孔顶部岩心微体古生物和有孔虫同位素的变化, 探讨冰期旋回中赤道西太平洋晚第四纪古生产力的变化.多种古生产力替代指标揭示出赤道西太平洋古生产力自深海氧同位素13期以来总体呈升高趋势, 具有冰期高、间冰期低的特征.温跃层替代指标显示该海域温跃层变化不具有简单的冰期-间冰期变化模式, 而是分为2个阶段: 280ka以前温跃层平均深度较浅, 呈现高幅低频波动; 280ka以后温跃层平均深度变深, 呈现低幅高频波动.古生产力和温跃层变化模式的明显差异说明温跃层变化不是赤道西太平洋表层生产力波动的主要原因.807A孔古生产力变化与西北太平洋风尘通量变化基本一致, 所以提出来自亚洲中东部的风尘对于提高赤道西太平洋生物生产力可能具有重要意义.Abstract: Microfossil assemblages and foraminifer isotopes from the upper part of ODP Hole 807A on the Ontong Java plateau were studied to provide evidence for discussing Late Quaternary productivity variations with glacial cycles in the western equatorial Pacific. Multi-proxy results reveal that productivity gradually increased in general since marine isotope stage (MIS) 13, and was higher in glacial times than in interglacial times. The thermocline proxies do not completely fit into glacial-interglacial cycles, but present two stages of thermocline changes: shallower before 280 ka with higher amplitude and lower frequency abundance fluctuations; deeper after 280 ka with higher frequency and lower amplitude fluctuations. The distinct modes of variations between productivity and thermocline suggest that thermocline change is not a primary controlling factor of biological productivity in the western equatorial Pacific. As the fluctuations of paleoproductivity from Hole 807A match with dust flux records from the northwest Pacific, we propose that dust carried from east central Asian is likely to be more significant in enhancing biological productivity in the western equatorial Pacific.
-
图 1 翁通-爪哇海台807A孔、西加罗林海C4402孔、Shatshy海隆NGC102孔和V21-146孔以及西峰黄土剖面位置
图中阴影区示中国中北部黄土沉积范围(Hovan et al., 1991
图 4 温跃层替代指标的分布
据浮游有孔虫生态习性(Ravelo and Fairbanks, 1992), 浮游浅层种包括Globigerinoides ruber, Globigerinoides sacculifer (无最后一个房室)、Globigerinita glutinata.叠加在温跃层替代指标上的虚线表示283ka前后各指标的平均值
图 5 亚洲风尘在太平洋风尘沉积过程中的主导地位及亚洲风尘从西风带进入东北信风带示意图
a.太平洋矿物气溶胶沉积速率分布图(Rea, 1994); b.1978年5月5日至12日亚洲风尘从西风带3000m高空以反气旋形式到达恩内威塔克(Enewetak) 岛的理想化轨迹(外线所示); 内线圆点表示每天反气旋中心的位置(Duce et al., 1980)
Fig. 5. Map showing the single overwhelming Asian provenance of dust to the Pacific and the trajectory of Asian dust to the western Pacific
图 6 807A孔和NGC102孔古生产力替代指标、V21-146孔风尘通量和氧同位素以及西峰黄土序列分布
NGC102孔BFAR数据引自Ohkushi et al., 2000; 有机碳百分含量和堆积速率数据引自Kawahata et al., 1999; V21-146孔风尘通量和氧同位素以及西峰黄土序列引自Hovan et al., 1991
图 7 807A孔C. wuellerstorfi δ13C、浮游有孔虫碎壳率以及东南极Vostok站冰心的CO2、δD的分布
叠加在C. wuellerstorfi δ13C和碎壳率之上的虚线表示氧同位素13期以来它们各自的趋势线, 这两个趋势线没有包括同位素14期, 因为最近一次50万年周期始于13期(Wang et al., 2004); Vostok站CO2、δD数据引自Petit et al., 1999
表 1 807A孔顶部岩心年龄模式
Table 1. Age models for Hole 807A upper part
-
[1] Averyt, K. B., Paytan, A., 2004. A comparison of multipleproxies for export production in the equatorial Pacific. Paleoceanography, 19: PA4003, doi: 10.1029/2004PA001005. [2] Baumann, K., Andruleit, H. A., Su, X., 1998. Comparison of different preparation techniques for quantitative nannofossil studies. Journal of Nannoplankton Research, 20: 75-80. https://www.researchgate.net/publication/283632407_Comparison_of_different_preparation_techniques_for_quantitative_nannofossil_studies [3] Berger, W. H., 1973. Deep-sea carbonates: Pleistocene dissolution cycles. Journal of Foramini feral Research, 3: 187-195. doi: 10.2113/gsjfr.3.4.187 [4] Bollmann, J., Baumann, K. H., Thierstein, H. R., 1998. Global dominance of Gephyrocapsa coccoliths in Late Pleistocene: Selective dissolution, evolution, or global environmental change? Paleoceanography, 13: 517-529. doi: 10.1029/98PA00610 [5] Burke, S. C., 1981. Recent benthic foraminifera of the On-tong Java Plateau. Journal of Foraminiferal Research, 11: 1-19. doi: 10.2113/gsjfr.11.1.1 [6] Corliss, B. H., Chen, C., 1988. Morphotype patterns of Norwegian Sea deep-sea benthic foraminifera and ecologicali mplications. Geology, 16: 716-719. [7] Duce, R. A., Unni, C. K., Ray, B. J., et al., 1980. Long-rangeat mospheric transport of soil dust from Asia to the tropical north Pacific: Temporal variability. Science, 209: 1522-1524. doi: 10.1126/science.209.4464.1522 [8] Falkowski, P. G., 1997. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature, 387: 272-275. doi: 10.1038/387272a0 [9] Herguera, J. C., 1992. Deep-sea benthic foraminifera and biogenic opal: Glacial to postglacial productivity changes in the western equatorial Pacific. Marine Micropalontology, 19: 79-98. doi: 10.1016/0377-8398(92)90022-C [10] Herguera, J. C., Berger, W. H., 1991. Paleoproductivity from benthic foraminifera abundance: Glacial to postglacial change in the west-equatorial Pacific. Geology, 19: 1173-1176. https://pubs.geoscienceworld.org/gsa/geology/article-abstract/19/12/1173/205225/Paleoproductivity-from-benthic-foraminifera [11] Holbourn, A. E., Henderson, A., 2002. Re-illustration and revised taxonomy for selected deep-sea benthic foraminifers. Paleontologia Electronica, 4 (2), 34pp, 628kB; http://pa-leo-electronica.org/paleo2001_2/foram/issue2_01.htm. http://pa-leo-electronica.org/paleo2001_2/foram/issue2_01.htm [12] Hovan, S. A., Rea, D. K., Pisias, N. G., et al., 1989. A direct link between the China loess and marine δ18O records: A eolian flux to the north Pacific. Nature, 340: 296-298. doi: 10.1038/340296a0 [13] Hovan, S. A., Rea, D. K., Pisias, N. G., 1991. Late Pleistocene continental climate and oceanic variability recorded in Northwest Pacific sedi ments. Paleoceanography, 6: 349-370. doi: 10.1029/91PA00559 [14] Imbire, J., Hays, J. D., Martinson, D. G., et al., 1984. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18O record. In: Berger, A. L., Imbire, J., Hags, J. et al., eds., Milankovitch and climate. D. Reidel Publishing Company, Dordrecht, 269-305. [15] Jian, Z., Wang, L., 1997. Late Quaternary benthic foraminifera and deep-water paleo ceanography in the South China Sea. Marine Micropaleontolgy, 32: 127-154. doi: 10.1016/S0377-8398(97)00017-0 [16] Kawahata, H., Ohkushi, K., Hatakeyama, Y., 1999. Comparative Late Pleistocene paleoceanographic changes in the mid latitude boreal and austral western Pacific. Journal of Oceanography, 55: 747-761. doi: 10.1023/A:1007824415499 [17] Kawahata, H., Suzuki, A., Ahagon, N., 1998. Biogenic sediments in the West Caroline basin, the western equatorial Pacific during the last 330 000 years. Marine Geology, 149: 155-176. doi: 10.1016/S0025-3227(98)00039-5 [18] Koutavas, A., Lynch-Stieglitz, J., Marchitto, T. M., et al., 2002. El Niño-like pattern in ice age tropical Pacific sea surface temperature. Science, 297: 226-230. doi: 10.1126/science.1072376 [19] Krissek, L. A., Janecek, T. R., 1993. Eolian deposition on the Ontong Java plateau since the Oligocene: Unmixing a record of multiple dust sources. In: Berger, W. H., Kroenke, W., Mayer, L. A., et al., eds., Proceedings of the Ocean Drilling Program, Scientific results. College Station, Texas, Ocean Drilling Program, 130: 471-490. [20] Kroenke, L. W., Berger, W. H., Janecek, T. R., et al., 1991. Proceedings of the Ocean Drilling Project, Initial Reports. College Station, Texas, Ocean Drilling Program, 130: 369-493. [21] Kroopnick, P. M., 1985. The distribution of δ13C of CO2 in the world oceans. Deep Sea Research, 32: 57-84. doi: 10.1016/0198-0149(85)90017-2 [22] Kuhnt, W., Hess, S., Jian, Z., 1999. Quantitative composition of benthic foraminiferal assemblages as a proxy indicator for organic carbon flux rates in the South China Sea. Marine Geology, 156: 123-157. doi: 10.1016/S0025-3227(98)00176-5 [23] Le, J., Shackleton, N. J., 1992. Carbonate dissolution fluctuations in the western equatorial Pacific during the Late Quaternary. Paleoceanography, 7: 21-42. doi: 10.1029/91PA02854 [24] Liu, C. L., Cheng, X. R., Wang, R. J., et al., 2005. Oxygen and carbon isotope records of Quaternary calcareous nannofossils from the western Pacific warm pool and their palaeoceanog raphical significance. Earth Science-Journal of China University of Geosciences, 30 (5): 559-564, 603 (in Chinese with English abstract). doi: 10.1360/02tb9180 [25] Loubere, P., 1998. The impact of seasonality on the benthos as reflected in the assemblages of deeper water benthic foraminifera. Deep Sea Research, 45: 409-432. doi: 10.1016/S0967-0637(97)00092-7 [26] Loubere, P., 2000. Marine control of biological production in the eastern equatorial Pacific Ocean. Nature, 406: 497-500. doi: 10.1038/35020041 [27] Martin, J. H., 1990. Glacial-interglacial CO2 change: The iron hypothesis. Paleoceanography, 5: 1-13. doi: 10.1029/PA005i001p00001 [28] Mix, A. C., 1991. Carbon 13 in Pacific deep and intermediate waters, 0-370ka: Implications for ocean circulation and Pleistocene CO2. Paleoceanography, 6: 205-226. doi: 10.1029/90PA02303 [29] Molfino, B., Mclntyre, A., 1990. Precessional forcing of nutricline dynamics in the equatorial Atlantic. Science, 249: 766-769. doi: 10.1126/science.249.4970.766 [30] Ohkushi, K., Thomas, E., Kawahata, H., 2000. Abyssal benthic foraminifera from the northwestern Pacific (Shatsky Rise) during the last 298 kyr. Marine Micropaleotology, 38: 119-147. doi: 10.1016/S0377-8398(99)00040-7 [31] Okada, H., Honjo, S., 1973. The distribution of oceanic coccolithophorids in the Pacific. Deep Sea Research, 20: 355-374. doi: 10.1016/0011-7471(73)90059-4 [32] Petit, J. R., Jouzel, J., Raynaud, D., et al., 1999. Climate and atmospheric history of the past 420 000 years from the Vostokice core, Antarctica. Nature, 399: 429-436. doi: 10.1038/20859 [33] Prentice, M. L., Freiz, J. K., Si monds, G. G., et al., 1993. Neogene trends in planktonic foraminifer δ18O from site 807: Implications for global ice volume and western equatorial Pacific sea-surface temperatures. Proceedings of the Ocean Drilling Program, Scientific Results. College Station, Texas, Ocean Drilling Program, 130: 281-306. [34] Ravelo, A. C., Fairbanks, R. G., 1992. Oxygen isotopic composition of multiple species of planktonic foraminifera: Recorders of the modern photic zone temperature gradient. Paleoceanography, 7: 815-831. doi: 10.1029/92PA02092 [35] Rea, D. K., 1994. The paleocli matic record provided by eolian deposition in the deep sea: The geologic history of wind. Reviews of Geophysics, 32: 159-195. doi: 10.1029/93RG03257 [36] Sarnthein, M., Winn, K., 1990. Reconstruction of low and middle latitude export productivity, 30 000 years B. P. top resent: Implication for control of global carbon reser voirs. In: Schlesinger, M. E., ed., Climateocean interaction. Kluwer Academic Publishers, Dordrecht, 319-342. [37] Tuo, S. T., Liu, Z. F., Zhao, Q. H., et al., 2006. The earliest Oligocene glacial maxmum: Records from ODP Site 1265, South Atlantic. Earth Science-Journal of China University of Geosciences, 31 (2): 151-158 (in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTotal-DQKX200602001.htm [38] Wang, P., Tian, J., Cheng, X., et al., 2004. Major Pleistocene stages in a carbon perspective: The South China Sea record and its global comparison. Paleoceanography, 19: PA4005, doi: 10.1029/2003PA000991. [39] Wu, G., Berger, W. H., 1991. Pleistocene δ18O records from Ontong-Java plateau: Effects of winnowing and dissolution. Marine Geology, 96: 193-209. doi: 10.1016/0025-3227(91)90147-V [40] 刘传联, 成鑫荣, 王汝建, 等, 2005. 西太平洋暖池区第四纪钙质超微化石氧碳同位素特征及意义. 地球科学——中国地质大学学报, 30 (5): 559-564, 603. [41] 拓守廷, 刘志飞, 赵泉鸿, 等, 2006. 渐新世初大冰期事件: 南大洋ODP1265站的记录. 地球科学——中国地质大学学报, 31 (2): 151-158.